Palladium nanoparticles anchored on NiO particles-modified micro-size chitosan spheres: A promising, active, and retrievable catalyst system for treatment of environmental pollutants
dc.contributor.author | Erdoğan, Afife Nur | |
dc.contributor.author | Baran, Talat | |
dc.date.accessioned | 2024-07-24T07:28:11Z | |
dc.date.available | 2024-07-24T07:28:11Z | |
dc.date.issued | 2024 | |
dc.department | Sabire Yazıcı Fen Edebiyat Fakültesi | |
dc.description.abstract | Efficient treatment of toxic organic pollutants in water/wastewater by using innovative, cost efficient, and simple technologies has recently become an important issue worldwide. Remediation of these pollutants with chemical reduction in the presence of a nano-sized catalyst and a reducing agent is one of the most useful methodologies. In the present study, we have designed a promising heterogeneous catalyst system (Pd@CS-NiO) by easy and efficient stabilization of palladium nanoparticles on the surface of microspheres composed of chitosan (CS)-NiO particles (CS-NiO) for the reduction of organic pollutants. The nano-structure of the developed Pd@CS-NiO was successfully validated using FE-SEM, XRD, EDS, TEM, and FTIR/ATR and its particles size was determined as 10 nm. The catalytic power of Pd@CS-NiO was then assessed in the reduction of 4-nitro-o-phenylenediamine (4-NPDA), 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), 2-nitroaniline (2-NA), and some organic dyes, namely methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) in aqueous medium at room temperature. The reductions were thoroughly studied spectro-photometrically. The tests displayed that the synthesized Pd@CS-NiO was a highly active and useful catalyst that reduced these pollutants in 0-145 s. Moreover, the rate constants for 2-NA, 4-NP, 4-NA, 4-NPDA, MO, and RhB were found to be 0.017 s-1, 0.011 s-1, 0.006 s-1, 0.013 s-1, 0.023 s-1, and 0.03 s-1, respectively. Moreover, the recycling test indicated that Pd@CS-NiO may be recovered easily thanks to its micro size nature and could be used up to seven steps, confirming its practical application potential. | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https:/dx.doi.org/10.1016/j.ijbiomac.2024.133835 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12451/12214 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | International Journal of Biological Macromolecules | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | Catalytic Reduction | |
dc.subject | Chitosan | |
dc.subject | Nanocatalyst | |
dc.title | Palladium nanoparticles anchored on NiO particles-modified micro-size chitosan spheres: A promising, active, and retrievable catalyst system for treatment of environmental pollutants | |
dc.type | Article |