IMAC application of extracellular polymeric substances doped composite membranes for ?-amylase immobilization and kinetic studies
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Immobilized metal affinity chromatography (IMAC), extensively utilized technique in affinity chromatography, has proven to be highly effective in purifying ?-amylase, a crucial enzyme in industrial applications. Here, Poly (2-hydroxyethyl methacrylate) (PHEMA) based composite membranes were fabricated using the radical copolymerization technique in a petri dish. Extracellular polymeric materials (EPS) as the metal binding agent. The attachment of Cu2+ ions to the membranes occurred through the utilization of EPSs (Cu2+-EPS). The membranes having Cu2+-EPS (Cu2+-EPS-PM) were subjected to various characterization techniques, including scanning electron microscopy (SEM), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), swelling tests, and surface area measurements. The investigation also encompassed the examination of various factors, including pH, initial ?-amylase concentration, temperature, and ionic strength, that exert an influence on the adsorption of ?-amylase from an aqueous medium. The Cu2+-EPS-PMs demonstrated maximum adsorption capacity with a value of 54.2 mg/g polymer (pH 5.0 sodium acetate buffer, temperature: 25°C, initial ?-amylase concentration of 2 mg/mL). Additionally, it has been observed that the enzyme is able to be used in adsorption and desorption cycles on Cu2+-EPS-PM many times. The investigation also focused on examining the impact of pH, temperature, storage, and operational stability over the activities of both free and immobilized ?-amylase. The outcomes showed that immobilization had positive effects on activity.