?-Amylase immobilized composite cryogels: Some studies on kinetic and adsorption factors
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Stability of enzymes is a significant factor for their industrial feasibility. ?-Amylase is an important enzyme for some industries, i.e., textile, food, paper, and pharmaceutics. Pumice particles (PPa) are non-toxic, natural, and low-cost alternative adsorbents with high adsorption capacity. In this study, Cu2+ ions were attached to pumice particles (Cu2+-APPa). Then, Cu2+-APPa embedded composite cryogel was synthesized (Cu2+-APPaC) via polymerization of gel-forming agents at minus temperatures. Characterization studies of the Cu2+-APPaC cryogel column were performed by X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), and Brunauer, Emmett, Teller (BET) method. The experiments were carried out in a continuous column system. ?-Amylase was adsorbed onto Cu2+-APPaC cryogel with maximum amount of 858.7 mg/g particles at pH 4.0. Effects of pH and temperature on the activity profiles of the free and the immobilized ?-amylase were investigated, and results indicate that immobilization did not alter the optimum pH and temperature values. kcat value of the immobilized ?-amylase is higher than that of the free ?-amylase while KM value increases by immobilization.