Doping qualifications of LiFe1-xMgxPO4-C Nano-scale composite cathode materials

dc.authoridORNEK, AHMET -- 0000-0002-2481-1903
dc.contributor.authorÖrnek, Ahmet
dc.contributor.authorEfe, Osman
dc.date.accessioned13.07.201910:50:10
dc.date.accessioned2019-07-29T19:26:33Z
dc.date.available13.07.201910:50:10
dc.date.available2019-07-29T19:26:33Z
dc.date.issued2015
dc.departmentAksaray Üniversitesi
dc.description.abstractPure LiFePO4 and the nano-sized LiFe1-xMgxPO4-C (x = 0.00, 0.02, 0.04, 0.06 and 0.08) cathode materials have been prepared and investigated for Li-ion batteries. Samples were synthesized by handy and cheap sol-gel-assisted carbothermal reduction method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and inductively coupled plasma (ICP) have been used to study the crystal structure, morphology and chemical composition of all produced materials. XRD findings reveal the slight decrease in crystal lattice of LiFePO4 after Mg2+ doping. Phase pure samples crystallize in the olivine-type structure with a linear relationship between lattice parameters (a,b and c) and chemical composition. The FE-SEM images have proved that Mg-doped particles are not agglomerated and the particle sizes (40-60 nm) are able to compete with the literature. The synthesized small particles of the sol-gel-assisted carbothermal reduction process lead to a superior capacity in comparison to a common solid-state synthesis. For a Mg content of 0.04% the capacity is reached to a higher level (167mAh g(-1)) and good capacity retention of 97.0% over 300 cycles is observed. Although doping with Mg has a remarkable effect on improving its electronic or ionic mobility, but serious electrochemical degradation will occur when its doping density is beyond 0.04 mol. The cycling voltammogram (CV) shows that Mg-doped LiFe0.96Mg0.04PO4-C electrode has improved electrical conductivity and diffusion coefficient of Li+ ions, in which Mg2+ is related to effectively act as a pillar in crystal lattice structure to prevent the collapse during lithium intercalation process. (C) 2015 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.electacta.2015.03.010
dc.identifier.endpage349en_US
dc.identifier.issn0013-4686
dc.identifier.issn1873-3859
dc.identifier.scopusqualityQ1
dc.identifier.startpage338en_US
dc.identifier.urihttps://doi.org/10.1016/j.electacta.2015.03.010
dc.identifier.urihttps://hdl.handle.net/20.500.12451/5638
dc.identifier.volume166en_US
dc.identifier.wosWOS:000354036200043
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevıer Scıence Ltd
dc.relation.ispartofElectrochımıca Acta
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLi-ion
dc.subjectCathode
dc.subjectMagnesium Doping
dc.subjectCarbon Coating
dc.subjectSol-Gel-Assisted Carbothermal Reduction
dc.titleDoping qualifications of LiFe1-xMgxPO4-C Nano-scale composite cathode materials
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ornek-ahmet-2015.pdf.pdf
Boyut:
2.88 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text