Exploiting implicit social relationships via dimension reduction to improve recommendation system performance

dc.contributor.authorAhmed Al-Sabaawi, Ali M.
dc.contributor.authorKaracan, Hacer U.
dc.contributor.authorYenice, Yusuf Erkan
dc.date.accessioned2020-06-09T08:31:57Z
dc.date.available2020-06-09T08:31:57Z
dc.date.issued2020
dc.departmentMühendislik Fakültesi
dc.description.abstractThe development of Web 2.0 and the rapid growth of available data have led to the development of systems, such as recommendation systems (RSs), that can handle the information overload. However, RS performance is severely limited by sparsity and cold-start problems. Thus, this paper aims to alleviate these problems. To realize this objective, a new model is proposed by integrating three sources of information: a user-item matrix, explicit and implicit relationships. The core strategy of this study is to use the multi-step resource allocation (MSRA) method to identify hidden relations in social information. First, explicit social information is used to compute the similarity between each pair of users. Second, for each non-friend pair of users, the MSRA method is applied to determine the probability of their relation. If the probability exceeds a threshold, a new relationship will be established. Then, all sources are incorporated into the Singular Value Decomposition (SVD) method to compute the missing prediction values. Furthermore, the stochastic gradient descent technique is applied to optimize the training process. Additionally, two real datasets, namely, Last.Fm and Ciao, are utilized to evaluate the proposed method. In terms of accuracy, the experiment results demonstrate that the proposed method outperforms eight state-of-the-art approaches: Heats, PMF, SVD, SR, EISR-JC, EISR-CN, EISR-PA and EISR-RAI.
dc.identifier.doi10.1371/journal.pone.0231457
dc.identifier.endpage-en_US
dc.identifier.issn1932-6203
dc.identifier.issue4en_US
dc.identifier.pmid32320416
dc.identifier.scopusqualityQ1
dc.identifier.startpage-en_US
dc.identifier.urihttps://dx.doi.org/10.1371/journal.pone.0231457
dc.identifier.urihttps://hdl.handle.net/20.500.12451/7558
dc.identifier.volume15en_US
dc.identifier.wosWOS:000536028800021
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherPublic Library of Science
dc.relation.ispartofPLoS ONE
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectControlled Study
dc.subjectHeat
dc.subjectHuman
dc.titleExploiting implicit social relationships via dimension reduction to improve recommendation system performance
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ahmed al-sabaawi-a.m.-2020.pdf
Boyut:
180.54 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: