Deep learning application in detecting glass defects with color space conversion and adaptive histogram equalization

dc.contributor.authorSarı, Filiz
dc.contributor.authorUlaş, Ali Burak
dc.date.accessioned2022-06-23T05:58:21Z
dc.date.available2022-06-23T05:58:21Z
dc.date.issued2022
dc.departmentMühendislik Fakültesi
dc.description.abstractManually detecting defects on the surfaces of glass products is a slow and time-consuming process in the quality control process, so computer-aided systems, including image processing and machine learning techniques are used to overcome this problem. In this study, scratch and bubble defects of the jar, photographed in the studio with a white matte background and a-60 degrees peak angle, are investigated with the Yolo-V3 deep learning technique. Obtained performance is 94.65% for the raw data. Color space conversion (CSC) techniques, HSV and CIE-Lab Luv, are applied to the resulting images. V channels select for preprocessing. While the HSV method decreases the performance, an increase has been observed in the CIE-Lab Luv method. With the CIE-Lab Luv method, to which is applied the adaptive histogram equalization, the maximum recall, precision, and F1-score reach above 97%. Also, Yolo-V3 compared with the Faster R-CNN, it is observed that Yolo-V3 gave better results in all analyzes, and the highest overall accuracy is achieved in both methods when adaptive histogram equalization is applied to CIE-Lab Luv.
dc.identifier.doi10.18280/ts.390238
dc.identifier.endpage736en_US
dc.identifier.issn0765-0019
dc.identifier.issn1958-5608
dc.identifier.issue2en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage731en_US
dc.identifier.urihttps:/dx.doi.org/10.18280/ts.390238
dc.identifier.urihttps://hdl.handle.net/20.500.12451/9468
dc.identifier.volume39en_US
dc.identifier.wosWOS:000798489300038
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInternational Information and Engineering Technology
dc.relation.ispartofTraitement du Signal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAdaptive Histogram Equalization
dc.subjectColor Space Conversion
dc.subjectGlass Defect Detection
dc.subjectDeep Learning
dc.titleDeep learning application in detecting glass defects with color space conversion and adaptive histogram equalization
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
sari-filiz-2022.pdf
Boyut:
1.14 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: