Deep learning application in detecting glass defects with color space conversion and adaptive histogram equalization
Yükleniyor...
Dosyalar
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
International Information and Engineering Technology
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Manually detecting defects on the surfaces of glass products is a slow and time-consuming process in the quality control process, so computer-aided systems, including image processing and machine learning techniques are used to overcome this problem. In this study, scratch and bubble defects of the jar, photographed in the studio with a white matte background and a-60 degrees peak angle, are investigated with the Yolo-V3 deep learning technique. Obtained performance is 94.65% for the raw data. Color space conversion (CSC) techniques, HSV and CIE-Lab Luv, are applied to the resulting images. V channels select for preprocessing. While the HSV method decreases the performance, an increase has been observed in the CIE-Lab Luv method. With the CIE-Lab Luv method, to which is applied the adaptive histogram equalization, the maximum recall, precision, and F1-score reach above 97%. Also, Yolo-V3 compared with the Faster R-CNN, it is observed that Yolo-V3 gave better results in all analyzes, and the highest overall accuracy is achieved in both methods when adaptive histogram equalization is applied to CIE-Lab Luv.
Açıklama
Anahtar Kelimeler
Adaptive Histogram Equalization, Color Space Conversion, Glass Defect Detection, Deep Learning
Kaynak
Traitement du Signal
WoS Q Değeri
Q3
Scopus Q Değeri
N/A
Cilt
39
Sayı
2