Synthesis and characterization of boron doped alumina stabilized zirconia fibers

dc.authoridFen Bilgisi Egitimi, Aksaray Egitim -- 0000-0001-8976-571X; Tunc, Tuncay -- 0000-0002-3576-2633
dc.contributor.authorUslu, İbrahim
dc.contributor.authorTunc, Tuncay
dc.contributor.authorKeskin, Selda B.
dc.contributor.authorÖztürk, Mustafa Kemal
dc.date.accessioned13.07.201910:50:10
dc.date.accessioned2019-07-29T19:28:32Z
dc.date.available13.07.201910:50:10
dc.date.available2019-07-29T19:28:32Z
dc.date.issued2011
dc.departmentEğitim Fakültesi
dc.description.abstractBoron doped PVA/Zr-Al acetate nanofibers were prepared by electrospinning using PVA as a precursor. The effect of calcination temperature on morphology and crystal structure was investigated at 250, 500, and 800 degrees C. The study also establishes the effect of boron doping on the morphology of PVA/Zr-Al acetate nanofibers at various calcination temperatures. The measurements showed that the conductivity, pH, viscosity and the surface tension of the hybrid polymer solutions have increased with boron doping. In addition, the fibers were characterized by FTIR, DSC, XPS, XRD and SEM techniques. The addition of boron did not only increase the thermal stability of the fibers, hut also increased the average fiber diameters, which gave stronger fibers. The DSC results indicated that the melting temperature (Tm) of the fibers was increased from 256 to 270 degrees C with the addition of boron. XRD peak patterns showed that after further heat treatment at 800 degrees C, zirconia exists in two phases of tetragonal and monoclinic modifications. Moreover, alumina does not transform into the gamma-Al2O3 and theta-Al2O3 phase at 800 degrees C. The SEM appearance of the fibers showed that the addition of boron resulted in the formation of crosslinked bright surfaced fibers.
dc.description.sponsorshipSelcuk University, Turkey
dc.description.sponsorshipThis work was supported by the grant of M Sc. Program, Selcuk University, Turkey.
dc.identifier.doi10.1007/s12221-011-0303-1
dc.identifier.endpage309en_US
dc.identifier.issn1229-9197
dc.identifier.issn1875-0052
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage303en_US
dc.identifier.urihttps://doi.org/10.1007/s12221-011-0303-1
dc.identifier.urihttps://hdl.handle.net/20.500.12451/6052
dc.identifier.volume12en_US
dc.identifier.wosWOS:000290739500003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherKorean Fiber SOC
dc.relation.ispartofFibers and Polymers
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElectrospinning
dc.subjectBoric Acid
dc.subjectNanofibers
dc.subjectZr-Al Acetate
dc.subjectPVA
dc.titleSynthesis and characterization of boron doped alumina stabilized zirconia fibers
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
uslu-ibrahim-2011.pdf
Boyut:
1.02 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text