Assessing and mapping landslide susceptibility using different machine learning methods

dc.authorid0000-0002-1362-8206
dc.authorid0000-0002-0881-0396
dc.authorid0000-0002-7594-5522
dc.authorid0000-0001-9335-1747
dc.authorid0000-0002-8629-1077
dc.contributor.authorOrhan, Osman
dc.contributor.authorBilgilioğlu, Süleyman Sefa
dc.contributor.authorKaya, Zehra
dc.contributor.authorÖzcan, Adem Kürşat
dc.contributor.authorBilgilioğlu, Hacer
dc.date.accessioned2022-09-07T11:09:11Z
dc.date.available2022-09-07T11:09:11Z
dc.date.issued2022
dc.departmentMühendislik Fakültesi
dc.description.abstractThe main aim of the present study was to produce and compare landslide susceptibility maps by using five machine learning techniques, namely, artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), random forest (RF) and, classification and regression tree (CART). The study area was determined as the Arhavi-Kabisre river basin, a region in which the most landslide incidents occur in Turkey. Firstly, a landslide inventory was produced by identifying a total of 252 landslides. Secondly, a total of 11 landslide conditioning factors were considered for the landslide susceptibility mapping. Subsequently, the five machine learning techniques were constructed with the help of the training dataset for the landslide susceptibility maps. Finally, the receiver operating characteristic (ROC), sensitivity, specificity, F-measure, accuracy and kappa index were applied to compare and validate the performance of the five machine learning techniques.
dc.identifier.doi10.1080/10106049.2020.1837258
dc.identifier.endpage2820en_US
dc.identifier.issn1010-6049
dc.identifier.issn1752-0762
dc.identifier.issue10en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage2795en_US
dc.identifier.urihttps:/dx.doi.org/10.1080/10106049.2020.1837258
dc.identifier.urihttps://hdl.handle.net/20.500.12451/9675
dc.identifier.volume37en_US
dc.identifier.wosWOS:000582873700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.ispartofGeocarto International
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectArtificial Neural Network
dc.subjectArtvin
dc.subjectLandslidesupport Vector Machine
dc.subjectSusceptibility
dc.titleAssessing and mapping landslide susceptibility using different machine learning methods
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
orhan-osman-2022.pdf
Boyut:
6.46 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: