Performance of negative selection algorithms in patient detection and classification

dc.contributor.authorBölükbaş, Orhan
dc.contributor.authorUğuz, Harun
dc.date.accessioned13.07.201910:50:10
dc.date.accessioned2019-07-16T09:17:21Z
dc.date.available13.07.201910:50:10
dc.date.available2019-07-16T09:17:21Z
dc.date.issued2018
dc.departmentEğitim Fakültesi
dc.description.abstractArtificial immune systems inspired by the natural immune system are used in problems such as classification, optimization, anomaly detection, and error detection. In these problems, clonal selection algorithm, artificial immune network algorithm, and negative selection algorithm are generally used. This chapter aims to solve the problem of correct identification and classification of patients using negative selection (NS) and variable detector negative selection (V-DET NS) algorithms. The authors examine the performance of NSA and V-DET NSA algorithms using three sets of medical data sets from Parkinson, carotid artery doppler, and epilepsy patients. According to the obtained results, NSA achieved 92.45%, 91.46%, and 92.21% detection accuracy and 92.46%, 93.40%, and 90.57% classification accuracy. V-DET NSA achieved 94.34%, 94.52%, and 91.51% classification accuracy and 94.23%, 94.40%, and 89.29% detection accuracy. As can be seen from these values, V-Det NSA yielded a better result. Artificial immune system emerges as an effective and promising system in terms of problem-solving performance.
dc.identifier.doi10.4018/978-1-5225-4769-3.ch004
dc.identifier.doi10.4018/978-1-5225-4769-3
dc.identifier.endpage102en_US
dc.identifier.isbn978-1-5225-4770-9; 978-1-5225-4769-3
dc.identifier.issn2327-7033
dc.identifier.issn2327-7041
dc.identifier.scopusqualityN/A
dc.identifier.startpage78en_US
dc.identifier.urihttps://doi.org/10.4018/978-1-5225-4769-3.ch004
dc.identifier.urihttps://doi.org/10.4018/978-1-5225-4769-3
dc.identifier.urihttps://hdl.handle.net/20.500.12451/4738
dc.identifier.wosWOS:000468557500008
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIGI Global
dc.relation.ispartofNature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems
dc.relation.ispartofseriesAdvances in Bioinformatics and Biomedical Engineering (ABBE) Book Series
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titlePerformance of negative selection algorithms in patient detection and classification
dc.typeArticle

Dosyalar