Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning

dc.contributor.authorHacıoğlu, Emirhan
dc.contributor.authorGürsoy, Faik
dc.contributor.authorMaldar, Samet
dc.contributor.authorAtalan, Yunus
dc.contributor.authorMilovanovic, Gradimir V.
dc.date.accessioned2021-07-01T07:36:47Z
dc.date.available2021-07-01T07:36:47Z
dc.date.issued2021
dc.departmentSabire Yazıcı Fen Edebiyat Fakültesi
dc.description*Maldar, Samet ( Aksaray, Yazar ) *Atalan, Yunus ( Aksaray, Yazar )
dc.description.abstractIn this paper, we revisit two recently published papers on the iterative approximation of fixed points by Kumam et al. (2019) [17] and Maniu (2020) [19] and reproduce convergence, stability, and data dependency results presented in these papers by removing some strong restrictions imposed on parametric control sequences. We confirm the validity and applicability of our results through various non-trivial numerical examples. We suggest a new method based on the iteration algorithm given by Thakur et al. (2014) [28] to solve the two-point second-order boundary value problems. Furthermore, based on the above mentioned iteration algorithm and S-iteration algorithm, we propose two new gradient type projection algorithms and applied them to supervised learning. In both applications, we present some numerical examples to demonstrate the superiority of the newly introduced methods in terms of convergence, accuracy, and computational time against some earlier methods.
dc.identifier.doi10.1016/j.apnum.2021.04.020
dc.identifier.endpage172en_US
dc.identifier.issue-en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage143en_US
dc.identifier.urihttps:/dx.doi.org/10.1016/j.apnum.2021.04.020
dc.identifier.urihttps://hdl.handle.net/20.500.12451/8242
dc.identifier.volume167en_US
dc.identifier.wosWOS:000657863200008
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Numerical Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectBoundary Value Problem
dc.subjectConvergence
dc.subjectData Dependence
dc.subjectMachine Learning
dc.subjectStability
dc.subjectSupervised Learning
dc.titleIterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
hacioglu-emirhan-2021.pdf
Boyut:
1017.39 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: