Sustainable arsenic removal using iron-oxide-coated natural minerals: Integrating adsorption, machine learning, and process optimization

dc.authorid0000-0003-0695-369X
dc.authorid0000-0001-6871-928X
dc.authorid0000-0001-6825-710X
dc.contributor.authorDönmez Öztel, Merve
dc.contributor.authorAlver, Alper
dc.contributor.authorAkbal, Feryal
dc.contributor.authorAltaş, Levent
dc.contributor.authorKuleyin, Ayşe
dc.date.accessioned2025-10-15T11:27:34Z
dc.date.available2025-10-15T11:27:34Z
dc.date.issued2025
dc.departmentMühendislik Fakültesi
dc.description.abstractWe investigated the sustainable removal of arsenite (As(III)) and arsenate (As(V)) from water using iron oxide-coated pumice (IOCP), sepiolite (IOCS), and zeolite (IOCZ) integrated with machine learning (ML) and optimization techniques. Adsorption kinetics followed a pseudo-second-order model, while equilibrium data were best represented by Langmuir and Sips isotherms, indicating chemisorption on heterogeneous surfaces. To predict and optimize performance, Artificial Neural Networks (ANN), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) were applied, with cross-validated results demonstrating the superior accuracy of ANN (R2 up to 0.96, RMSE 20–40 µg L-1). Coupling ANN with Genetic Algorithm and Bayesian Optimization identified global optima for pH, contact time, and initial concentration, yielding residual concentrations of ∼8.1 µg L-1 (IOCP-As(III)), ∼42 µg L-1 (IOCS-As(III)), and ∼1.7 µg L-1 (IOCZ-As(III)), and ∼1.3 µg L-1 (IOCP-As(V)), ∼28 µg L-1 (IOCS-As(V)), and ∼6.2 µg L-1 (IOCZ-As(V)). Compared with trial-and-error conditions (residuals of ∼112 µg L-1 for IOCS-As(III) and ∼27 µg L-1 for IOCP-As(V)), the optimized systems reduced chemical usage by up to 65 %, lowered treatment costs to ∼0.004–0.007 $ mg-1 As, and delivered positive environmental gains exceeding 80 % for IOCP-As(V) and IOCZ-As(III). These results demonstrate that natural mineral-based sorbents, when coupled with AI-driven optimization, can achieve near-complete removal of both As(III) and As(V) at low cost and with reduced environmental footprint, offering a technically robust and scalable framework for sustainable water treatment.
dc.identifier.doi10.1016/j.surfin.2025.107730
dc.identifier.issn24680230
dc.identifier.scopus2-s2.0-105017089416
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.surfin.2025.107730
dc.identifier.urihttps://hdl.handle.net/20.500.12451/14817
dc.identifier.volume74
dc.indekslendigikaynakScopus
dc.institutionauthorAlver, Alper
dc.institutionauthorAltaş, Levent
dc.institutionauthorid0000-0003-2734-8544
dc.institutionauthorid0000-0002-9738-560X
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofSurfaces and Interfaces
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArsenic Removal
dc.subjectIron Oxide Coating
dc.subjectMachine Learning
dc.subjectNatural Adsorbents
dc.subjectOptimization
dc.subjectSustainability
dc.subjectXGBoost
dc.titleSustainable arsenic removal using iron-oxide-coated natural minerals: Integrating adsorption, machine learning, and process optimization
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
donmez oztel-merve-2025.pdf
Boyut:
1.9 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: