Micro-encapsulation exhibits better protection than nano-encapsulation on phenolics before and after in vitro digestion
Yükleniyor...
Dosyalar
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
In this study, micro-capsules (by complex coacervation) and nano-capsules (by liposomal encapsulation) containing phenolic extracts from jujube peel (PEJP) were compared in terms of changes in encapsulation efficiency, phenolic and anthocyanin content and antioxidant, angiotensin converting-I enzyme (ACE) inhibitory and ?-amylase inhibitory activities before and after in vitro digestion. According to the results, micro-capsules were prepared with a biopolymer ratio of 0.125:1:1 (PEJP: WPI: GA) at pH 3.4, while nano-capsules were obtained using 1% lecithin and 0.4% chitosan at pH 3.4. Nano-capsules had higher encapsulation efficiency (74.27%) than micro-capsules (67.34%). In contrast, total phenolic content of PEJP was preserved better in micro-capsules before and after in vitro digestion compared with nano-capsules. The highest total monomeric anthocyanin content remained in the undigested micro-capsules and in the digested nano-capsules. Micro-capsules exhibited a stronger antioxidant activity than those of nano-capsules with PEJP with both DPPH and CUPRAC assays. After in vitro intestinal digestion, micro-capsules with PEJP exhibited the highest ACE inhibitory activity (80.00 ± 2.50%) and ?-amylase inhibitory (48.31 ± 0.84%) activity. Considering all these results, micro-capsules protected phenolics better than nano-capsules. The stability of phenolics based foods can be protected by microencapsulation. Also, microencapsulants including phenolics can be added to cosmetic and food supplements.
Açıklama
Anahtar Kelimeler
ACE Inhibitory Activity, Coacervate, Encapsulation, In Vitro Digestion, Liposome, A-amylase Inhibitory
Kaynak
Journal of Food Measurement and Characterization
WoS Q Değeri
N/A
Scopus Q Değeri
Q1