A comprehensive mathematical modeling study for temperature evolution during radio frequency assisted honey decrystallization

Yükleniyor...
Küçük Resim

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institution of Chemical Engineers

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In industrial settings, honey decrystallization is conducted by conventional thermal processing with hot water (12–18 h) or air (24–36 h) at around 60 °C. Considering the demands for a green and sustainable efficient process, a novel approach is needed. Radio frequency (RF) heating is a dielectric process where volumetric heat generation within the sample is expected. Designing such a process requires the knowledge of temperature evolution within the product. Hence, the objective of this study was to develop a mathematical model to determine the temperature evolution of crystallized honey during RF processing and compare the results with conventional approach to demonstrate the efficiency. For this purpose, a computational model was developed to determine the temperature evolution in a crystallized honey during RF and conventional hot water processing. Natural convection effects were also included within the model to see whether there will be any improving effect despite the higher viscosity. Decrystallization kinetics was also coupled with temperature evolution to observe the process efficiency. The results indicated the efficiency of RF heating as an innovative processing approach for decrystallization while the natural convection effects were not significant.

Açıklama

Anahtar Kelimeler

Decrystallization, Honey, Natural Convection Effects, Radio Frequency Processing

Kaynak

Food and Bioproducts Processing

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

150

Sayı

Künye