Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods

dc.authorid0000-0002-6417-8946
dc.contributor.authorÖzsoy, Volkan Soner
dc.contributor.authorÜnsal, Mehmet Güray
dc.contributor.authorÖrkcü, H. Hasan
dc.date.accessioned2020-03-04T09:47:07Z
dc.date.available2020-03-04T09:47:07Z
dc.date.issued2020
dc.departmentOrtaköy Meslek Yüksekokulu
dc.descriptionÖzsoy, Volkan Soner ( Aksaray, Yazar )
dc.description.abstractThe generalized gamma distribution (GGD) is a popular distribution because it is extremely flexible. Due to the density function structure of GGD, estimating the parameters of the GGD family by statistical point estimation techniques is a complicated task. In other words, for the parameter estimation, the maximizing likelihood function of GGD is a problematic case. Hence, alternative approaches can be used to obtain estimators of GGD parameters. This paper proposes an alternative parameter estimation method for GGD by using the heuristic optimization approaches such as Genetic Algorithms (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). A comparison between different modern heuristic optimization methods applied to maximize the likelihood function for parameter estimation is presented in this paper. The paper also investigates both the performance of heuristic methods and estimation of GGD parameters. Simulations show that heuristic approaches provide quite accurate estimates. In most of the cases, DE has better performance than other heuristics in terms of bias values of parameter estimations. Besides, the usefulness of an alternative parameter estimation method for GGD using the heuristic optimization approach is illustrated with a real data set.
dc.identifier.endpage-en_US
dc.identifier.issue-en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage-en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12451/7392
dc.identifier.volume-en_US
dc.identifier.wosWOS:000516091900001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofComputational Statistics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectGeneralized Gamma Distribution
dc.subjectMaximum Likelihood Function
dc.subjectHeuristic Techniques
dc.subjectReal Dataset
dc.titleUse of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
ozsoy-volkan soner-2020.pdf
Boyut:
3.1 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: