Dijital reklamcılıkta makine öğrenmesi ve veri gizliliği
Yükleniyor...
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ahmet Fidan
Erişim Hakkı
Attribution-NonCommercial-NoDerivs 3.0 United States
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
Dijital reklamcılık düşük reklam maliyetleri, hızlı ve etkili tüketici geri bildirimi, artan verimlilik ve ayrıntılı müşteri tabanı oluşturma avantajlarından dolayı şirketler için giderek daha önemli hale gelmektedir. Geleneksel reklamcılıkta daha çok sezgiye ve tecrübeye dayanan içerik üretme, dijital reklamcılıkta veriye dayalıdır. Böylece tüketicilerin dijital izlerine göre kişiselleştirilmiş hedef reklamlar sunulmaktadır. Hedef reklamcılık, dijital reklamcılığın odağına yerleşirken, bu alanda geliştirilen yöntemler hem şirketler hem de araştırmacılar için yeni ufuklar açmaktadır. Dijital reklamcılıkta hedefli reklamların sunulmasında teklif verme makineleri veya kişiye özel fiyat ve promosyon sunan fiyatlandırma motoru, genel olarak gelişmiş bir makine öğrenmesi algoritmasıyla gerçekleştirilmektedir. Makine öğrenmesi, şirketlere reklam üzerinde daha fazla kontrol gücü verirken, en önemli tartışma konusu ise reklamların kişiselleştirilmesi ve bunun sonucu olarak veri gizliliği ihlallerinin yaşanabilmesidir. Bu makale, makine öğrenmesi algoritmaları ile hedef reklamcılığın işletmelere sağladığı faydalar yanında, veri gizliliği endişelerine de odaklanarak konuyu bütüncül bir yaklaşımla ele almaktadır. Makalede hedef reklamcılığın getirdiği yüksek karlılığı korurken, tüketicilerin veri gizliliği endişesiyle satın alma davranışından vazgeçmelerini engelleyecek adımların neler olduğu tartışılmıştır. Sonuç olarak tüketici verilerinin dijital reklamcılıkta kullanılmasının önemi ortaya çıkmıştır. Bununla birlikte makine öğrenmesi algoritmaları ile kişiye özgü veri gizlilik ayarlarının yapılarak mahremiyetin, tüketicinin gizlilik sınırları çerçevesinde yapılandırılması gerektiği vurgulanmaktadır. Böylece şirketlerin hem kârlılığı koruması hem de veri gizliliği nedeniyle tüketici kayıplarının önüne geçmesi mümkün olacaktır.
Digital advertising provides great advantages such as lower advertising costs, fast and reliable feedbacks from customers, increased efficiency, and the ability to create detailed databases of customers, which make it increasingly more important for companies. Production of contents is mainly based on intuition and experience in conventional advertising, while it is based on data in digital advertising. This makes it possible to offer targeted advertisements that are customized according to the digital trails of consumers. Targeted advertising has become the focus of digital advertising, and methods that have been developed in this field open new horizons both for companies and researchers. To provide targeted advertisements for digital advertising, bidding machines or pricing engines that offer customized prices and promotions are typically generated by means of a machine learning algorithm. Machine learning provides companies with more power to control advertisements; but the most important issue of debate is the customization of advertisements and therefore the possibility that data privacy is compromised. This paper discusses the issue with a holistic approach by focusing on the concerns of data privacy in addition to the benefits of targeted advertisements and machine learning algorithms for businesses. This paper also discusses the steps that would prevent consumers from not proceeding with a purchase due to concerns about data privacy, while maintaining the high level of profitability gained thanks to targeted advertisements. As a result, the importance of using consumer data in digital advertising was emphasized. However, privacy should be configured within the limits of consumer privacy by making personal data privacy settings with machine learning algorithms. Thus, it will be possible for companies both to protect their profitability and prevent consumer losses due to data privacy.
Digital advertising provides great advantages such as lower advertising costs, fast and reliable feedbacks from customers, increased efficiency, and the ability to create detailed databases of customers, which make it increasingly more important for companies. Production of contents is mainly based on intuition and experience in conventional advertising, while it is based on data in digital advertising. This makes it possible to offer targeted advertisements that are customized according to the digital trails of consumers. Targeted advertising has become the focus of digital advertising, and methods that have been developed in this field open new horizons both for companies and researchers. To provide targeted advertisements for digital advertising, bidding machines or pricing engines that offer customized prices and promotions are typically generated by means of a machine learning algorithm. Machine learning provides companies with more power to control advertisements; but the most important issue of debate is the customization of advertisements and therefore the possibility that data privacy is compromised. This paper discusses the issue with a holistic approach by focusing on the concerns of data privacy in addition to the benefits of targeted advertisements and machine learning algorithms for businesses. This paper also discusses the steps that would prevent consumers from not proceeding with a purchase due to concerns about data privacy, while maintaining the high level of profitability gained thanks to targeted advertisements. As a result, the importance of using consumer data in digital advertising was emphasized. However, privacy should be configured within the limits of consumer privacy by making personal data privacy settings with machine learning algorithms. Thus, it will be possible for companies both to protect their profitability and prevent consumer losses due to data privacy.
Açıklama
Anahtar Kelimeler
Makine Öğrenmesi, Veri Gizliliği, Dijital Reklamcılık, Hedef Reklamcılık, Yapay Zekâ, Machine Learning, Data Privacy, Digital Advertising, Targeted Advertising, Artificial Intelligence
Kaynak
Kent Akademisi (Online)
WoS Q Değeri
Scopus Q Değeri
Cilt
15
Sayı
3