On Gaussian Leonardo Hybrid Polynomials

dc.authorid0000-0002-6224-1921
dc.contributor.authorYa?mur, Tülay
dc.date.accessioned2023-10-02T06:05:16Z
dc.date.available2023-10-02T06:05:16Z
dc.date.issued2023
dc.departmentSabire Yazıcı Fen Edebiyat Fakültesi
dc.description.abstractIn the present paper, we first study the Gaussian Leonardo numbers and Gaussian Leonardo hybrid numbers. We give some new results for the Gaussian Leonardo numbers, including relations with the Gaussian Fibonacci and Gaussian Lucas numbers, and also give some new results for the Gaussian Leonardo hybrid numbers, including relations with the Gaussian Fibonacci and Gaussian Lucas hybrid numbers. For the proofs, we use the symmetric and antisymmetric properties of the Fibonacci and Lucas numbers. Then, we introduce the Gaussian Leonardo polynomials, which can be considered as a generalization of the Gaussian Leonardo numbers. After that, we introduce the Gaussian Leonardo hybrid polynomials, using the Gaussian Leonardo polynomials as coefficients instead of real numbers in hybrid numbers. Moreover, we obtain the recurrence relations, generating functions, Binet-like formulas, Vajda-like identities, Catalan-like identities, Cassini-like identities, and d’Ocagne-like identities for the Gaussian Leonardo polynomials and hybrid polynomials, respectively.
dc.identifier.doi10.3390/sym15071422
dc.identifier.issn2073-8994
dc.identifier.issue7en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps:/dx.doi.org10.3390/sym15071422
dc.identifier.urihttps://hdl.handle.net/20.500.12451/11023
dc.identifier.volume15en_US
dc.identifier.wosWOS:001036369000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofSymmetry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFibonacci Number
dc.subjectGaussian Number
dc.subjectHybrid Number
dc.subjectHybrid Polynomial
dc.subjectLeonardo Number
dc.titleOn Gaussian Leonardo Hybrid Polynomials
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
tulay-yagmur-2023.pdf
Boyut:
280.73 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: