A counterexample to Elaydi’s conjecture
dc.authorid | 0009-0008-6165-643X | |
dc.contributor.author | Alper, Güvey İsmail | |
dc.date.accessioned | 2025-07-21T06:21:27Z | |
dc.date.available | 2025-07-21T06:21:27Z | |
dc.date.issued | 2025 | |
dc.department | Sabire Yazıcı Fen Edebiyat Fakültesi | |
dc.description.abstract | In this work, we define a chaotic map that contradicts Elaydi’s conjecture. Firstly, we present some important concepts used in this paper and define a continuous map f on [0,2], which is connected according to the usual topology on R. Moreover, we show that f is chaotic on [0,2] by using topological conjugacy with the ‘tent map’. Finally, we conclude that f^2=f∘f is not chaotic on [0,2]. In addition, this example also shows that topological transitivity does not imply total transitivity. | |
dc.identifier.doi | 10.20290/estubtdb.1487804 | |
dc.identifier.endpage | 6 | |
dc.identifier.issn | 2667-419X | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://dx.doi.org/10.20290/estubtdb.1487804 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12451/13405 | |
dc.identifier.volume | 13 | |
dc.indekslendigikaynak | TR-Dizin | |
dc.institutionauthor | Alper, Güvey İsmail | |
dc.language.iso | en | |
dc.publisher | Eskişehir Teknik Üniversitesi | |
dc.relation.ispartof | Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi b- Teorik Bilimler | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Chaos | |
dc.subject | Topologically Transitive | |
dc.subject | Totally Transitive | |
dc.subject | Topological Conjugacy | |
dc.title | A counterexample to Elaydi’s conjecture | |
dc.type | Article |