A counterexample to Elaydi’s conjecture

dc.authorid0009-0008-6165-643X
dc.contributor.authorAlper, Güvey İsmail
dc.date.accessioned2025-07-21T06:21:27Z
dc.date.available2025-07-21T06:21:27Z
dc.date.issued2025
dc.departmentSabire Yazıcı Fen Edebiyat Fakültesi
dc.description.abstractIn this work, we define a chaotic map that contradicts Elaydi’s conjecture. Firstly, we present some important concepts used in this paper and define a continuous map f on [0,2], which is connected according to the usual topology on R. Moreover, we show that f is chaotic on [0,2] by using topological conjugacy with the ‘tent map’. Finally, we conclude that f^2=f∘f is not chaotic on [0,2]. In addition, this example also shows that topological transitivity does not imply total transitivity.
dc.identifier.doi10.20290/estubtdb.1487804
dc.identifier.endpage6
dc.identifier.issn2667-419X
dc.identifier.issue1
dc.identifier.startpage1
dc.identifier.urihttps://dx.doi.org/10.20290/estubtdb.1487804
dc.identifier.urihttps://hdl.handle.net/20.500.12451/13405
dc.identifier.volume13
dc.indekslendigikaynakTR-Dizin
dc.institutionauthorAlper, Güvey İsmail
dc.language.isoen
dc.publisherEskişehir Teknik Üniversitesi
dc.relation.ispartofEskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi b- Teorik Bilimler
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectChaos
dc.subjectTopologically Transitive
dc.subjectTotally Transitive
dc.subjectTopological Conjugacy
dc.titleA counterexample to Elaydi’s conjecture
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
guvey-ismail alper-2025.pdf
Boyut:
539.16 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: