A counterexample to Elaydi’s conjecture
Yükleniyor...
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Eskişehir Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this work, we define a chaotic map that contradicts Elaydi’s conjecture. Firstly, we present some important concepts used in this paper and define a continuous map f on [0,2], which is connected according to the usual topology on R. Moreover, we show that f is chaotic on [0,2] by using topological conjugacy with the ‘tent map’. Finally, we conclude that f^2=f∘f is not chaotic on [0,2]. In addition, this example also shows that topological transitivity does not imply total transitivity.
Açıklama
Anahtar Kelimeler
Chaos, Topologically Transitive, Totally Transitive, Topological Conjugacy
Kaynak
Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi b- Teorik Bilimler
WoS Q Değeri
Scopus Q Değeri
Cilt
13
Sayı
1