A counterexample to Elaydi’s conjecture

Yükleniyor...
Küçük Resim

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Eskişehir Teknik Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this work, we define a chaotic map that contradicts Elaydi’s conjecture. Firstly, we present some important concepts used in this paper and define a continuous map f on [0,2], which is connected according to the usual topology on R. Moreover, we show that f is chaotic on [0,2] by using topological conjugacy with the ‘tent map’. Finally, we conclude that f^2=f∘f is not chaotic on [0,2]. In addition, this example also shows that topological transitivity does not imply total transitivity.

Açıklama

Anahtar Kelimeler

Chaos, Topologically Transitive, Totally Transitive, Topological Conjugacy

Kaynak

Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi b- Teorik Bilimler

WoS Q Değeri

Scopus Q Değeri

Cilt

13

Sayı

1

Künye