Computational study of mechanical stability and phonon properties of MXenes Mo2ScC2T2(T = O and F): 2D materials
dc.contributor.author | Bölen, E. | |
dc.contributor.author | Deligöz, Engin | |
dc.date.accessioned | 2021-12-08T05:19:25Z | |
dc.date.available | 2021-12-08T05:19:25Z | |
dc.date.issued | 2021 | |
dc.department | Sabire Yazıcı Fen Edebiyat Fakültesi | |
dc.description.abstract | The structural, electronic, elastic, and phonon properties of pristine Mo2ScC2 and surface terminated Mo2ScC2T2 (T = O and F) were investigated by employing density functional theory calculations. Generalized gradient approximation was used to model exchange-correlation effects. The electronic band structure was calculated using both Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functional and found that all considered materials are metallic. Elastic constants, Young's moduli, shear moduli, in-plane stiffnesses, and Poisson's ratios were tabulated and showed that pristine Mo2ScC2 and surface terminated Mo2ScC2T2 satisfy the mechanical stability criteria. Furthermore, Mo2ScC2O2 has been found to be a significant candidate for ultrasensitive sensors due to its ultrahigh Young's modulus. The absence of the imaginary line in phonon band structures confirms the dynamic stability of Mo2ScC2, Mo2ScC2O2, and Mo2ScC2F2. Furthermore, Debye temperatures, phonon group velocities, thermodynamic properties, and Grüneisen parameters were calculated for Mo2ScC2 and Mo2ScC2O2. Finally, it is understood that Mo2ScC2 and Mo2ScC2O2 are suitable candidates for applications that require low thermal conductivity. | |
dc.identifier.doi | 10.1063/5.0055701 | |
dc.identifier.endpage | - | en_US |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | - | en_US |
dc.identifier.uri | https:/dx.doi.org/ 10.1063/5.0055701 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12451/8886 | |
dc.identifier.volume | 130 | en_US |
dc.identifier.wos | WOS:000683103600005 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | American Institute of Physics | |
dc.relation.ispartof | Journal of Applied Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Computational Study of Mechanical Stability | |
dc.subject | Mo2ScC2T2(T = O and F) | |
dc.title | Computational study of mechanical stability and phonon properties of MXenes Mo2ScC2T2(T = O and F): 2D materials | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: