Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification

dc.contributor.authorAtalan, Yunus
dc.contributor.authorHacıoğlu, Emirhan
dc.contributor.authorErtürk, Müzeyyen
dc.contributor.authorGürsoy, Faik
dc.contributor.authorMilovanovi?, Gradimir V.
dc.date.accessioned2024-08-26T11:06:07Z
dc.date.available2024-08-26T11:06:07Z
dc.date.issued2024
dc.departmentSabire Yazıcı Fen Edebiyat Fakültesi
dc.description.abstractIn this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios.
dc.identifier.doi10.1007/s10898-024-01425-w
dc.identifier.issn0925-5001
dc.identifier.scopusqualityQ2
dc.identifier.urihttps:/dx.doi.org/10.1007/s10898-024-01425-w
dc.identifier.urihttps://hdl.handle.net/20.500.12451/12379
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Global Optimization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIterative Algorithm
dc.subjectNonexpansive Mappings
dc.subjectRelaxed (?, ?)-cocoercive Mappings
dc.subjectVariational Inequalities
dc.titleNovel algorithms based on forward-backward splitting technique: effective methods for regression and classification
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
atalan-yunus-2024.pdf
Boyut:
2.21 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: