Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network
Yükleniyor...
Dosyalar
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Ltd
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
Heat is an important efficiency reducing factor in photovoltaic systems. Although many studies in the literature are related to the removal of waste heat from photovoltaic panels, the disadvantages such as installation and maintenance of cooling systems should not be forgotten. A study has shown that with a new approach, energy can be produced with the method of energy harvesting from waste heat. The results of the study were limited to a geographical region and climatic conditions in Aksaray, Turkey. In this article, the results of the study, which was limited to a region, were extended using the finite element method analysis and the artificial neural network model. Ten different cases were determined and temperature gradient was found by finite element analysis. The forecasting algorithm was developed with artificial neural network and estimates the harvestable power based on the temperature gradient. The accuracy of the algorithm was tested with the MSE and nRMSE statistical metrics which were calculated as 59.1423 mW and 13.6189 %, respectively. The training data accuracy of the network was 0.93987 and the combined accuracy was 0.94364. The results of this study are important to be a reference for researchers who want to establish a photovoltaic panel energy harvesting system.
Açıklama
Anahtar Kelimeler
Artificial Neural Networks, Energy Harvesting, Photovoltaic System, Power Forecasting, Temperature gradient
Kaynak
Renewable Energy
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
222
Sayı
-