Enhancing photovoltaic energy output predictions using ANN and DNN: a hyperparameter optimization approach

dc.contributor.authorCoşgun, Atıl Emre
dc.date.accessioned2025-10-15T11:13:50Z
dc.date.available2025-10-15T11:13:50Z
dc.date.issued2025
dc.departmentMühendislik Fakültesi
dc.description.abstractThis study investigates the use of artificial neural networks (ANNs) and deep neural networks (DNNs) for estimating photovoltaic (PV) energy output, with a particular focus on hyperparameter tuning. Supervised regression for photovoltaic (PV) direct current power prediction was conducted using only sensor-based inputs (PanelTemp, Irradiance, AmbientTemp, Humidity), together with physically motivated-derived features (ΔT, IrradianceEff, IrradianceSq, Irradiance × ΔT). Samples acquired under very low irradiance (<50 W m−2) were excluded. Predictors were standardized with training-set statistics (z-score), and the target variable was modeled in log space to stabilize variance. A shallow artificial neural network (ANN; single hidden layer, widths {4–32}) was compared with deeper multilayer perceptrons (DNN; stacks {16 8}, {32 16}, {64 32}, {128 64}, {128 64 32}). Hyperparameters were selected with a grid search using validation mean squared error in log space with early stopping; Bayesian optimization was additionally applied to the ANN. Final models were retrained and evaluated on a held-out test set after inverse transformation to watts. Test performance was obtained as MSE, RMSE, MAE, R2, and MAPE for the ANN and DNN. Hence, superiority in absolute/squared error and explained variance was exhibited by the ANN, whereas lower relative error was achieved by the DNN with a marginal MAE advantage. Ablation studies showed that moderate depth can be beneficial (e.g., two-layer variants), and a simple bootstrap ensemble improved robustness. In summary, the ANN demonstrated superior performance in terms of absolute-error accuracy, whereas the DNN exhibited better consistency with relative-error accuracy.
dc.identifier.doi10.3390/en18174564
dc.identifier.issn19961073
dc.identifier.issue17
dc.identifier.scopus2-s2.0-105015968732
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/en18174564
dc.identifier.urihttps://hdl.handle.net/20.500.12451/14815
dc.identifier.volume18
dc.indekslendigikaynakScopus
dc.institutionauthorCoşgun, Atıl Emre
dc.institutionauthorid0000-0002-4889-300X
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofEnergies
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectANN
dc.subjectDNN
dc.subjectEpoch
dc.subjectHidden Layer
dc.subjectHyperparameter
dc.subjectLearning Rate
dc.titleEnhancing photovoltaic energy output predictions using ANN and DNN: a hyperparameter optimization approach
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
cosgun-atil emre-2025.pdf
Boyut:
2.66 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: