Enhancing photovoltaic energy output predictions using ANN and DNN: a hyperparameter optimization approach
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
This study investigates the use of artificial neural networks (ANNs) and deep neural networks (DNNs) for estimating photovoltaic (PV) energy output, with a particular focus on hyperparameter tuning. Supervised regression for photovoltaic (PV) direct current power prediction was conducted using only sensor-based inputs (PanelTemp, Irradiance, AmbientTemp, Humidity), together with physically motivated-derived features (ΔT, IrradianceEff, IrradianceSq, Irradiance × ΔT). Samples acquired under very low irradiance (<50 W m−2) were excluded. Predictors were standardized with training-set statistics (z-score), and the target variable was modeled in log space to stabilize variance. A shallow artificial neural network (ANN; single hidden layer, widths {4–32}) was compared with deeper multilayer perceptrons (DNN; stacks {16 8}, {32 16}, {64 32}, {128 64}, {128 64 32}). Hyperparameters were selected with a grid search using validation mean squared error in log space with early stopping; Bayesian optimization was additionally applied to the ANN. Final models were retrained and evaluated on a held-out test set after inverse transformation to watts. Test performance was obtained as MSE, RMSE, MAE, R2, and MAPE for the ANN and DNN. Hence, superiority in absolute/squared error and explained variance was exhibited by the ANN, whereas lower relative error was achieved by the DNN with a marginal MAE advantage. Ablation studies showed that moderate depth can be beneficial (e.g., two-layer variants), and a simple bootstrap ensemble improved robustness. In summary, the ANN demonstrated superior performance in terms of absolute-error accuracy, whereas the DNN exhibited better consistency with relative-error accuracy.