SWFT: Subbands wavelet for local features transform descriptor for corneal diseases diagnosis

dc.contributor.authorAl-Salihi, Samer K.
dc.contributor.authorAydın, Zengin
dc.contributor.authorGhaeb, Nebras H.
dc.date.accessioned2021-06-24T19:39:43Z
dc.date.available2021-06-24T19:39:43Z
dc.date.issued2021
dc.departmentMühendislik Fakültesi
dc.descriptionAl-Salihi, Samer K. (Aksaray, Yazar )
dc.description.abstractHuman cornea is the front see-through shield of the eye. It refracts light onto the retina to induce vision. Therefore, any defect in the cornea may lead to vision disturbance. This deficiency is estimated by sets of topographical images measured, and assessed by an ophthalmologist. Consequently, an important priority is the early and accurate diagnosis of diseases that may affect corneal integrity through the use of machine learning algorithms. Images produced by a Pentacam device can be subjected to rotation or some distortion during acquisition; therefore, accurate diagnosis requires the use of local features in the image. Accordingly, a new algorithm called subbands wavelet for local features transform (SWFT) which is mainly based on the algorithm of a scale-invariant feature transform (SIFT) has been developed. This algorithm uses wavelets as a multiresolution analysis to produce images with different scales instead of using the difference of Gaussians as in the SIFT algorithm. The experimental results on the corneal topography dataset indicate that the proposed SWFT outperforms the baseline SIFT algorithm.
dc.identifier.doi10.3906/ELK-2004-114
dc.identifier.endpage896en_US
dc.identifier.issn1300-0632
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage875en_US
dc.identifier.urihttps:/dx.doi.org/10.3906/ELK-2004-114
dc.identifier.urihttps://hdl.handle.net/20.500.12451/8177
dc.identifier.volume29en_US
dc.identifier.wosWOS:000680006300003
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTurkiye Klinikleri
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer-aided Diagnosis
dc.subjectFeature Extraction
dc.subjectMachine Learning
dc.subjectSupport Vector Machines
dc.subjectWavelet Transforms
dc.titleSWFT: Subbands wavelet for local features transform descriptor for corneal diseases diagnosis
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
al-salihi-samer k.-2021.pdf
Boyut:
3.48 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: