Keratin/ kantaron bazlı karboksimetil selüloz mikro boncukları üzerine immobilize edilmiş gümüş nanopartiküllerin sentezi, karakterizasyonu, sitotoksisitesi ve antioksidan özelliklerinin araştırılması
Yükleniyor...
Dosyalar
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Aksaray Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Metal nanopartiküller sahip oldukları üstün optik, fiziksel ve biyolojik aktivitelerinden dolayı, kimya, biyoloji ve malzeme bilimi gibi birçok alanda yaygın olarak kullanılmaktadır. Özellikle, son yıllarda, metal nanopartiküllerin, sahip oldukları antibakteriyel, antifungal ve biyouyumluluk özelliklerinden dolayı biyomedikal uygulamalarda kullanımına olan ilgi artmıştır. Bununla birlikte, sentez sırasında gümüş nanopartiküller yığılma/topaklanma eğilimindedirler, bu da onların aktiviteleri üzerinde olumsuz bir etki oluşturmaktadır. Bu problem, yüzey alanı geniş ve metaller ile güçlü etkileşim yapabilecek ideal katı destekler üzerinde metal nanopartiküllerin biriktirilmesi ile aşılabilir. Bunun için ideal katı destek malzemelerinin geliştirilmesine ihtiyaç duyulmaktadır. Bu tez çalışmasında, gümüş nanopartiküllerin yığılma/topaklanma problemlerini ortadan kaldıracak, karboksimetil selüloz/kantaron keratin bazlı mikro boncuklar (CMC/Ht/FK) destek materyali olarak ilk kez sentezlenmiştir. Sonrasında sentezlenen polimerik kompozit destek materyali üzerinde gümüş nanopartiküller (Ag@CMC/Ht/FK) biriktirilmiştir. Üretilen biyomalzemelerin kimyasal ve morfolojik yapıları FT-IR, FE-SEM, EDX, XRD ve TEM teknikleri ile karakterize edilmiştir. Ek olarak, biyolojik aktiviteleri antioksidan testi kullanılarak hesaplanmış ve en iyi antioksidan aktivite gösteren malzemelere hücre kültürü analizleri ve in vitro hücre çizik testleri uygulanmıştır. Çalışmalar sonucunda en yüksek antioksidan aktivite 1 g keratin eklenen Ag@CMC/Ht/FK nanopartikülleri (%88,04) için bulunmuştur. TEM sonuçlarına göre Ag nanopartiküllerin boyutunun 14 nm olduğu belirlenmiştir. Üretilen ekstrelerin hiçbiri sitotoksisite göstermemiştir. En iyi hücre canlılığı gösteren 3 dozda hücre çizik testi yapılmış ve Ag@CMC/Ht/FK'nın in vitro yara iyileştirici aktivitesi, CMC/Ht/FK' ya göre daha iyi olarak belirlenmiştir.
Metal nanoparticles are widely used in many fields such as chemistry, biology and materials science due to their superior optical, physical and biological activities. In particular, in recent years, there has been an increased interest in the use of metal nanoparticles in biomedical applications due to their antibacterial, antifungal and biocompatibility properties. However, silver nanoparticles tend to agglomerate during synthesis, which has a negative impact on their activity. This problem can be overcome by depositing metal nanoparticles on ideal solid supports with large surface area and strong interaction with metals. For this, there is a need to develop ideal solid support materials. In this thesis, carboxymethyl cellulose/ cornflower keratin-based microbeads (CMC/Ht/FK) were synthesized for the first time as a support material to eliminate the agglomeration/agglomeration problems of silver nanoparticles. Silver nanoparticles (Ag@CMC/Ht/FK) were then deposited on the synthesized polymeric composite support material. The chemical and morphological structures of the fabricated biomaterials were characterized by FT-IR, FE-SEM, EDX, XRD and TEM techniques. In addition, their biological activities were calculated using antioxidant assay and cell culture assays and in vitro cell scratch tests were applied to the materials with the best antioxidant activity. As a result of the studies, the highest antioxidant activity was found for Ag@CMC/Ht/FK nanoparticles (88.04%) added to 1 g keratin. According to TEM results, the size of Ag nanoparticles was determined to be 14 nm. None of the extracts produced showed cytotoxicity. Cell scratch test was performed at 3 doses showing the best cell viability and the in vitro wound healing activity of Ag@CMC/Ht/FK was determined to be better than CMC/Ht/FK.
Metal nanoparticles are widely used in many fields such as chemistry, biology and materials science due to their superior optical, physical and biological activities. In particular, in recent years, there has been an increased interest in the use of metal nanoparticles in biomedical applications due to their antibacterial, antifungal and biocompatibility properties. However, silver nanoparticles tend to agglomerate during synthesis, which has a negative impact on their activity. This problem can be overcome by depositing metal nanoparticles on ideal solid supports with large surface area and strong interaction with metals. For this, there is a need to develop ideal solid support materials. In this thesis, carboxymethyl cellulose/ cornflower keratin-based microbeads (CMC/Ht/FK) were synthesized for the first time as a support material to eliminate the agglomeration/agglomeration problems of silver nanoparticles. Silver nanoparticles (Ag@CMC/Ht/FK) were then deposited on the synthesized polymeric composite support material. The chemical and morphological structures of the fabricated biomaterials were characterized by FT-IR, FE-SEM, EDX, XRD and TEM techniques. In addition, their biological activities were calculated using antioxidant assay and cell culture assays and in vitro cell scratch tests were applied to the materials with the best antioxidant activity. As a result of the studies, the highest antioxidant activity was found for Ag@CMC/Ht/FK nanoparticles (88.04%) added to 1 g keratin. According to TEM results, the size of Ag nanoparticles was determined to be 14 nm. None of the extracts produced showed cytotoxicity. Cell scratch test was performed at 3 doses showing the best cell viability and the in vitro wound healing activity of Ag@CMC/Ht/FK was determined to be better than CMC/Ht/FK.
Açıklama
Anahtar Kelimeler
Ag Nanopartiküller, Mikro Boncuklar, Keratin, Karboksimetil Selüloz, Antioksidan, Hücre Çizik Testi, Sitotoksisite, Hypericum Triquetrifolium, Ag Nanoparticles, Microbeads, Keratin, Carboxymethyl Cellulose, Antioxidant, Cell Scratch Test, Cytotoxicity, Hypericum Triquetrifolium