Optimal scheduling of on-Street EV charging stations

dc.contributor.authorAkıl, Murat
dc.contributor.authorDokur, Emrah
dc.contributor.authorBayındır, Ramazan
dc.date.accessioned2023-01-13T08:43:00Z
dc.date.available2023-01-13T08:43:00Z
dc.date.issued2022
dc.departmentTeknik Bilimler Meslek Yüksekokulu
dc.description.abstractThe uncoordinated charging of Electric Vehicles (EVs) into the grid increases the stochastic rebound peak on the grid. These charging demands can strain grid equipment at the street charging points in an area. In this study, a smart coordination approach is proposed for charging process management by considering the parking times of EVs. EV types with different characteristics are used in the smart coordination approach. This approach limits the charging powers to the minimum value between the charging point and the EV maximum power ratio. Also, the approach using quadratic programming (QP) for charge scheduling of 20 EV minimizes the cost of daily charging via the Generic Algebraic Modeling System (GAMS). The results show that EV charges occur within the maximum allowable grid limits, reducing the cost of charging. Additionally, the proposed smart coordination prevented the occurrence of daily on-grid rebound peaks at street charging points in the area.
dc.identifier.doi10.1109/PEMC51159.2022.9962880
dc.identifier.endpage684en_US
dc.identifier.isbn978-166549681-0
dc.identifier.issue-en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage679en_US
dc.identifier.urihttps:/dx.doi.org/10.1109/PEMC51159.2022.9962880
dc.identifier.urihttps://hdl.handle.net/20.500.12451/9912
dc.identifier.volume-en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof2022 IEEE 20th International Power Electronics and Motion Control Conference, PEMC 2022
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectCharge Scheduling
dc.subjectElectric Vehicles
dc.subjectQuadratic Programming
dc.subjectRebound Peak
dc.subjectSmart Coordination
dc.titleOptimal scheduling of on-Street EV charging stations
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
akil-murat-2022.pdf
Boyut:
752.26 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: