Effects of spectral shifting in an inertial confinement fusion system
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
The main objective is to study the effects of spectral shifting in an inertial confinement system for kT/shot energy regime on the breeding performance for tritium and for high quality fissile fuel. A protective liquid droplet jet zone of 2 m thickness is used as coolant, energy carrier, and breeder. Flibe as the main constituent is mixed with increased mole-fractions of heavy metal salt (ThF4 or UF4) starting by 2 moles% up to 12 moles%. Spectrum softening within the inertial confinement system reduces the tritium production ratio (TBR) in the protective coolant to a lower level than unity. However, additional tritium production in the 6Li 2DT zone of the system increases TBR to values above unity and allows a continuous operation of the power plant with a self-sustained fusion fuel supply. By modest fusion fuel burn efficiencies (40 to 60%) and with a few mol.% of heavy metal salt in the coolant in form of ThF4 or % UF 4, a satisfactory TBR of > 1.05 can be realized. In addition to that, excess fissile fuel of extremely high isotopic purity with a rate of ~1000 kg/year of 233U or 239Pu can be produced. Radiation damage through atomic displacements and helium gas production after a plant operation period of 30 years is very low, namely dpa <1 and He <2 ppm, respectively. © Carl Hanser Verlag, München.