Evaluating vision transformer models for breast cancer detection in mammographic imaging

dc.authorid0000-0002-0000-8411
dc.authorid0000-0002-3734-8807
dc.contributor.authorDemiroğlu, Uğur
dc.contributor.authorŞenol, Bilal
dc.contributor.editorKerim, Engin
dc.date.accessioned2025-07-21T05:55:26Z
dc.date.available2025-07-21T05:55:26Z
dc.date.issued2025
dc.departmentMühendislik Fakültesi
dc.description.abstractBreast cancer is a leading cause of mortality among women, with early detection being crucial for effective treatment. Mammographic analysis, particularly the identification and classification of breast masses, plays a crucial role in early diagnosis. Recent advancements in deep learning, particularly Vision Transformers (ViTs), have shown significant potential in image classification tasks across various domains, including medical imaging. This study evaluates the performance of different Vision Transformer (ViT) models—specifically, base-16, small-16, and tiny-16—on a dataset of breast mammography images with masses. We perform a comparative analysis of these ViT models to determine their effectiveness in classifying mammographic images. By leveraging the self-attention mechanism of ViTs, our approach addresses the challenges posed by complex mammographic textures and low contrast in medical imaging. The experimental results provide insights into the strengths and limitations of each ViT model configuration, contributing to an informed selection of architectures for breast mass classification tasks in mammography. This research underscores the potential of ViTs in enhancing diagnostic accuracy and serves as a benchmark for future exploration of transformer-based architectures in the field of medical image classification.
dc.identifier.doi10.17798/bitlisfen.1583948
dc.identifier.endpage313
dc.identifier.issn2147-3188
dc.identifier.issue1
dc.identifier.startpage287
dc.identifier.urihttps://dx.doi.org/10.17798/bitlisfen.1583948
dc.identifier.urihttps://hdl.handle.net/20.500.12451/13401
dc.identifier.volume14
dc.indekslendigikaynakTR-Dizin
dc.institutionauthorDemiroğlu, Uğur
dc.institutionauthorŞenol, Bilal
dc.institutionauthorid0000-0002-0000-8411
dc.institutionauthorid0000-0002-3734-8807
dc.language.isoen
dc.publisherBitlis Eren Üniversitesi Rektörlüğü
dc.relation.ispartofBitlis Eren Üniversitesi Fen Bilimleri Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBreast Mammography With Masses
dc.subjectImage Classification
dc.subjectVision Transformers
dc.subjectBase-16
dc.subjectSmall-16
dc.subjectTiny-16
dc.titleEvaluating vision transformer models for breast cancer detection in mammographic imaging
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
demiroglu-ugur-2025.pdf
Boyut:
1.38 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: