Local information pattern descriptor for corneal diseases diagnosis

dc.contributor.authorJameel, Samer Kais
dc.contributor.authorAydın, Sezgin
dc.contributor.authorGhaeb, Nebras H.
dc.date.accessioned2021-11-08T07:38:23Z
dc.date.available2021-11-08T07:38:23Z
dc.date.issued2021
dc.departmentMühendislik Fakültesi
dc.description.abstractLight penetrates the human eye through the cornea, which is the outer part of the eye, and then the cornea directs it to the pupil to determine the amount of light that reaches the lens of the eye. Accordingly, the human cornea must not be exposed to any damage or disease that may lead to human vision disturbances. Such damages can be revealed by topographic images used by ophthalmologists. Consequently, an important priority is the early and accurate diagnosis of diseases that may affect corneal integrity through the use of machine learning algorithms, particularly, use of local feature extractions for the image. Accordingly, we suggest a new algorithm called local information pattern (LIP) descriptor to overcome the lack of local binary patterns that loss of information from the image and solve the problem of image rotation. The LIP based on utilizing the sub-image center intensity for estimating neighbors' weights that can use to calculate what so-called contrast based centre (CBC). On the other hand, calculating local pattern (LP) for each block image, to distinguish between two sub-images having the same CBC. LP is the sum of transitions of neighbors' weights, from sub-image center value to one and vice versa. Finally, creating histograms for both CBC and LP, then blending them to represent a robust local feature vector. Which can use for diagnosing, detecting.
dc.identifier.doi10.11591/ijece.v11i6.pp4972-4981
dc.identifier.endpage4981en_US
dc.identifier.issue6en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage4972en_US
dc.identifier.urihttps:/dx.doi.org/10.11591/ijece.v11i6.pp4972-4981
dc.identifier.urihttps://hdl.handle.net/20.500.12451/8596
dc.identifier.volume11en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Advanced Engineering and Science
dc.relation.ispartofInternational Journal of Electrical and Computer Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectComputer Vision
dc.subjectFeature Extraction
dc.subjectLocal Information Pattern
dc.subjectMachine Learning
dc.titleLocal information pattern descriptor for corneal diseases diagnosis
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
jameel-samer kais-2021.pdf
Boyut:
937.04 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: