Common fixed point theorems for complex-valued mappings with applications

dc.contributor.authorMaldar, Samet
dc.contributor.authorAtalan, Yunus
dc.date.accessioned2022-09-28T06:55:25Z
dc.date.available2022-09-28T06:55:25Z
dc.date.issued2022
dc.departmentSabire Yazıcı Fen Edebiyat Fakültesi
dc.description.abstractThe aim of this paper is to obtain some results which belong to fixed point theory such as strong convergence, rate of convergence, stability, and data dependence by using the new Jungck-type iteration method for a mapping defined in complex-valued Banach spaces. In addition, some of these results are supported by nontrivial numerical examples. Finally, it is shown that the sequence obtained from the new iteration method converges to the solution of the functional integral equation in complex-valued Banach spaces. The results obtained in this paper may be interpreted as a generalization and improvement of the previously known results.
dc.identifier.doi10.11568/kjm.2022.30.2.205
dc.identifier.endpage229en_US
dc.identifier.issn1976-8605
dc.identifier.issn2288-1433
dc.identifier.issue2en_US
dc.identifier.startpage205en_US
dc.identifier.urihttps:/dx.doi.org/10.11568/kjm.2022.30.2.205
dc.identifier.urihttps://hdl.handle.net/20.500.12451/9687
dc.identifier.volume30en_US
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherKangwon-Kyungki Mathematical Society
dc.relation.ispartofKorean Journal of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectIntroduction and Preliminaries
dc.titleCommon fixed point theorems for complex-valued mappings with applications
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
maldar-samet-2022.pdf
Boyut:
435.01 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: