Classification Of Pistachio Images With The ResNet Deep Learning Model

dc.contributor.authorAvuçlu, Emre
dc.date.accessioned2025-07-30T12:41:57Z
dc.date.available2025-07-30T12:41:57Z
dc.date.issued2023
dc.departmentMühendislik Fakültesi
dc.description.abstractPistachio, which is grown in many parts of the world today, has an important place in the agricultural economy. In order to maintain this economic value, the post-harvest industrial classification process is very important to obtain efficiency from this harvest. In the process of separating pistachios, an efficient classification process is needed in order for different pistachio species to appeal to different markets. For this reason, the classification process of pistachios is very important. In this study, Kirmizi and Siirt pistachio classification with 2148 images was made using ResNet architecture. After the statistical experimental studies, the highest classification accuracy was obtained from fold-1 as 88.5781% and the Accuracy value was 0.86168 after the classification process.
dc.identifier.doi10.15316/SJAFS.2023.029
dc.identifier.endpage300
dc.identifier.issn2458-8377
dc.identifier.issue2
dc.identifier.startpage291
dc.identifier.urihttps://dx.doi.org/10.15316/SJAFS.2023.029
dc.identifier.urihttps://hdl.handle.net/20.500.12451/13665
dc.identifier.volume37
dc.indekslendigikaynakTR-Dizin
dc.institutionauthorAvuçlu, Emre
dc.institutionauthorid0000-0002-1622-9059
dc.language.isoen
dc.publisherSelçuk Üniversitesi Ziraat Fakültesi
dc.relation.ispartofSelcuk Journal of Agriculture and Food Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPistachio Classification
dc.subjectDeep Learning
dc.subjectResNet
dc.titleClassification Of Pistachio Images With The ResNet Deep Learning Model
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
avuclu-emre-2023.pdf
Boyut:
1018.9 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: