Two models based on social relations and SVD++ method for recommendation system

dc.contributor.authorAl Sabaawi, Ali M. Ahmed
dc.contributor.authorKaracan, Hacer
dc.contributor.authorYenice, Yusuf Erkan
dc.date.accessioned2021-06-24T20:46:26Z
dc.date.available2021-06-24T20:46:26Z
dc.date.issued2021
dc.departmentMühendislik Fakültesi
dc.description*Al Sabaawi, Ali M. Ahmed (Aksaray, Yazar ) *Yenice, Yusuf Erkan (Aksaray, Yazar )
dc.description.abstractRecently, Recommender Systems (RSs) have attracted many researchers whose goal is to improve the performance of the prediction accuracy of recommendation systems by alleviating RSs drawbacks. The most common limitations are sparsity and the cold-start user problems. This article proposes two models to mitigate the effects of these limitations. The proposed models exploit five sources of information: rating information, which involves two sources, namely explicit and implicit, which can be extracted via users’ ratings, and two types of social relations: explicit and implicit relations, the last source is confidence values that are included in the first model only. The whole sources are combined into the Singular Value Decomposition plus (SVD++) method. First, to extract implicit relations, each non-friend pair of users, the Multi-Steps Resource Allocation (MSRA) method is adopted to compute the probability of being friends. If the probability has accepted value which exceeds a threshold, an implicit relationship will be created. Second, the similarity of explicit and implicit social relationships for each pair of users is computed. Regarding the first model, a confidence value between each pair of users is computed by dividing the number of common items by the total number of items which have also rated by the first user of this pair. The confidence values are combined with the similarity values to produce the weight factor. Furthermore, the weight factor, explicit, and implicit feedback information are integrated into the SVD++ method to compute the missing prediction values. Additionally, three standard datasets are utilized in this study, namely Last. Fm, Ciao, and FilmTrust, to evaluate our models. The experimental results have revealed that the proposed models outperformed state-of-the-art approaches in terms of accuracy.
dc.identifier.doi10.3991/IJIM.V15I01.17751
dc.identifier.endpage87en_US
dc.identifier.issn1865-7923
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage70en_US
dc.identifier.urihttps:/dx.doi.org/10.3991/IJIM.V15I01.17751
dc.identifier.urihttps://hdl.handle.net/20.500.12451/8183
dc.identifier.volume15en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInternational Association of Online Engineering
dc.relation.ispartofInternational Journal of Interactive Mobile Technologies
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCold-start
dc.subjectData Sparsity
dc.subjectRecommendation System
dc.subjectSocial Relations
dc.subjectSVD++
dc.titleTwo models based on social relations and SVD++ method for recommendation system
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
al sabaawi-ali m. ahmed-2021.pdf
Boyut:
1015.44 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: