Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kara, Merve" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Global behavior of two-dimensional difference equations system with two period coefficients
    (Tbilisi Center for Mathematical Sciences, 2020) Kara, Merve; Tollu, Durhasan Turgut; Yazlık, Yasin
    In this paper, we investigate the following system of difference equations x(n+1) = alpha(n)/1 + y(n)x(n-1), y(n+1) = beta(n)/1 + x(n)y(n-1), n is an element of N-0, where the sequences (alpha(n))(n is an element of N0), (beta(n))(n is an element of N0) are positive, real and periodic with period two and the initial values x(-1), x(0), y(-1), y(0) are non-negative real numbers. We show that every positive solution of the system is bounded and examine their global behaviors. In addition, we give closed forms of the general solutions of the system by using the change of variables. Finally, we present a numerical example to support our results.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On a solvable three-dimensional system of difference equations
    (University of Nis, 2020) Kara, Merve; Yazlık, Yasin
    n this paper, we show that the following three-dimensional system of difference equations (Formula Presented) where the parameters a, b, c, d, e, f and the initial values x?i, y?i, z?i, i ? {1, 2, 3}, are real numbers, can be solved, extending further some results in literature. Also, we determine the asymptotic behavior of solutions and the forbidden set of the initial values by using the obtained formulas.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On a three dimensional higher order system of difference equations
    (Watam Press, 2022) Akrour, Youssouf; Kara, Merve; Touafek, Nouressadat; Yazlık, Yasin
    In this work, we derive the solutions form of the following three-dimensional system of nonlinear difference equations of higher-order (Formula presented). where the parameters ?, ?, a, b, A, B and the initial values x?i, y?i, z?i, i ? {0, 1, …, k} are non-zero real numbers. provided in details. The behavior of the solutions of our system with p = 1 is.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Solvability of a system of higher order nonlinear difference equations
    (Hacettepe University, 2020) Kara, Merve; Yazlık, Yasin; Tollu, Durhasan Turgut
    In this paper we show that the system of difference equations xn = ayn-k + dyn-kxn-(k+l)/bxn-(k+l) + cyn-l, yn = ?xn-k + ?xn-kyn-(k+l)/?yn-(k+l) + ?xn-l, where n ? ?0, k and l are positive integers, the parameters a, b, c, d, ?, ?, ?, ? are real numbers and the initial values x-j, y-j, j = 1, k + l, are real numbers, can be solved in the closed form. We also determine the asymptotic behavior of solutions for the case l = 1 and describe the forbidden set of the initial values using the obtained formulas. Our obtained results significantly extend and develop some recent results in the literature.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Solvability of a system of nonlinear difference equations of higher order
    (TUBITAK, 2019) Kara, Merve; Yazlık, Yasin
    In this paper, we show that the following higher-order system of nonlinear difference equations, xn=xn-kyn-k-l/yn-l(an+bnxn-kyn-k-l, yn=yn-kxn-k-l/xn-l(?n+ßnyn-kxn-k-l), n?0, where k, l,? , (an)n ? 0, (bn)n ? 0, (?n)n ? 0, (ßn)n ? 0 and the initial values x-i; y-i, i = 1, k + l , are real numbers, can be solved and some results in the literature can be extended further. Also, by using these obtained formulas, we investigate the asymptotic behavior of well-defined solutions of the above difference equations system for the case k = 2, l = k. © Tübitak.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Well-defined solutions of a three-dimensional system of difference equations
    (Gazi University, 2020) Kara, Merve; Touafek, Nouressadat; Yazlık, Yasin
    We show that the three-dimensional system of difference equations [ Formula Presented] n ? N0, where the parameters a, b, c, ?, ?, ? and the initial conditions x?i, y?i, z?i, i ? {0,1}, are non-zero real numbers, can be solved. Using the obtained formulas, we determine the asymptotic behavior of solutions and give conditions for which periodic solutions exist. Some numerical examples are given to demonstrate the theoretical results.

| Aksaray Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Aksaray Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Aksaray, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim