Yazar "Ziya, Ulviye" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Günlük akarsu akımlarının farklı makine öğrenmesi yöntemleri ile tahmini(Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2024) Ziya, UlviyeGünlük akarsu akımlarının tahmini su yapılarının işletilmesi, kontrolü ve yönetimi için oldukça önemlidir. Pek çok parametreye bağlı değişkenlik gösteren bir hidrolojik parametre olan akım değerlerinin kısa süreli değerlerinin tahmini zor bir konudur. Günlük, haftalık gibi kısa süreli akış tahminleri, bir havzadaki belirli bir rezervuarın ileriye yönelik akışını tahmin etmek için kullanılır. Bu tahminler, mevcut su kaynaklarının optimum kullanımı için rezervuar depolamasının aktif olarak düzenlenmesini gerektiren hidroelektrik güç planlaması ve taşkın azaltılması gibi durumları planlamak için kullanılır. Bu sebeple akarsu yapılarının yönetiminde gerek rezervuarda ne kadar su biriktirileceği veya bırakılacağının belirlenmesinde gerekse üretilecek enerji miktarının belirlenmesinde kısa süreli akım tahminlerine ihtiyaç duyulmaktadır. Bu sebeple en uygun tahmin yapılabilmesi su yapıları yönetiminde hayati öneme sahiptir. Bu çalışma kapsamında kısa süreli akım tahminlerinde kullanılan pek çok makine öğrenmesi yöntemleri arasından seçilmiş olan Gauss Süreci Regresyon Analizi (GPR), Destek Vektör Makinesi (DVM), Karar Ağaçları (KA), Rastgele Orman (RO) ve Yapay Sinir Ağları (YSA/ANN) yöntemlerinden en uygun olanı araştırılmıştır. Daha sonra bu yöntemlerin sonuçlarının iyileştirilmesi için Dalgacık Dönüşümü metodu kullanılmış ve aynı yöntemlerin Dalgacık Dönüşümünden sonraki modelleri hesaplanmıştır. Dalgacık dönüşümü öncesi ve sonrası oluşturulan yöntem ve modellerin sonuçları çeşitli istatistiksel kriterler ile karşılaştırılmıştır. En iyi model dalgacık dönüşümü sonrası Destek Vektörleri Makinesi yöntemlerinden Lineer fonksiyonu kerneli ile oluşturulan M04 modeli (R:0.998131, NSE:0.99624, KGE:0.99282, PI:0.03940, RMSE:0.30386, MAPE:0.05553) olarak bulunmuştur.