Yazar "Rached, Youcef" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe DFT assessment on the future prospects of inorganic lead-free halide double perovskites Cs2ABI6 (AB: GeZn, SnBe) for energy conversion technologies(Elsevier B.V., 2024) Caid, Messaoud; Rached, Habib; Rached, Djamel; Özışık, Hacı; Delig?z, Engin; Rached, YoucefIn this study, we employed density functional theory (DFT) calculations to investigate the structural, elastic, electronic, optical, and thermoelectric properties of Cs2ABI6 (AB: GeZn, SnBe) halide double perovskites (HDPs). We employed the full-potential linear augmented plane-wave (FP-LAPW) method, incorporating the generalized gradient approximation (GGA) and Tran-Blaha modified Becke-Johnson (TB-mBJ) approach for the exchange-correlation potential. We found that the HDPs are stable in a cubic structure (space group Fm-3m), as indicated by phase stability analysis, formation energies, tolerance factor, and elastic constants. The compounds exhibits ductile behavior, as assessed by Poisson's and Pugh's ratios. The electronic band structures of Cs2GeZnI6 and Cs2SnBeI6 exhibit indirect band gaps (X-L) of 1.124 eV and 1.551 eV, respectively, as calculated using the TB-mBJ approximation. Optical spectra were evaluated over the 0–13 eV energy range, including the dielectric functions, extinction coefficient, electron energy loss, refractive index, optical conductivity, reflectivity, and absorption coefficient. Additionally, we calculated thermoelectric parameters across a range of chemical potentials and temperatures to assess their suitability for thermoelectric applications. Our results suggest that these compounds are highly promising candidates for both optoelectronic and thermoelectric devices.Öğe Physical characteristics of Pb2FeSbO6 double perovskite for thermoelectric applications(Elsevier B.V., 2025) Caid, Messaoud; Rached, Djamel; Deligöz, Engin; Rached, Youcef; Rached, Habib; Irfani, MuhammadThe structural, mechanical, electronic, magnetic, optical, and thermoelectric properties of Pb2FeSbO6 double perovskite are investigated using full-potential linear augmented plane-wave (FP-LAPW) method incorporating the generalized gradient approximation (GGA) and GGA plus onsite Coulomb parameter (GGA + U). Pb2FeSbO6 crystallizes in a ferromagnetic (FM) cubic structure (space group Fm-3m) with lattice constants of 8.072 Å, in good agreement with experimental data. The compound exhibits ductile behavior, as assessed by Poisson and Pugh's ratios. It shows an integer magnetic moment of 5.00μB per formula unit and demonstrates semiconductor behavior with bandgaps as follows: under GGA, the band-gap is 2.347eV (Γ-X) in spin-up and is 1.208eV (X-Γ) in spin-down; under GGA + U, the band-gap is 2.923eV (X-Γ) in spin-up and is 1.665eV (X-X) in spin-down. Optical properties reveal strong absorption in the ultraviolet range, and thermoelectric evaluation suggests a promising figure of merit (ZTmax ≈ 1.0 at 300 K). These findings underscore the potential of Pb2FeSbO6 for thermoelectric and optoelectronic applications