Yazar "Lund, Jay R." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hydropower Reservoir Optimization with Solar Generation-Changed Energy Prices in California(Springer Science and Business Media B.V., 2024) Doğan, Mustafa Şahin; Medellin-Azuara, Josue; Lund, Jay R.Growing solar photovoltaic supply has significantly reshaped energy prices, lowering them during solar generating hours. Large-scale hydropower reservoir operations need to adapt to changes in energy prices to maximize hydropower revenue. This paper evaluates effects of solar generation-changed energy prices on hydropower generation for five multipurpose reservoirs in California using a hydroeconomic optimization model. In California, major solar generation began in 2013, so years 2010–2012 are a pre-solar period, and years 2013–2018 are post-solar. Reservoir operations, hydropower generation and revenue between these periods are compared. Operations in the wet season (January to June), and the dry season (July to December) are evaluated. Results show that releases are more profitable when hydropower is generated twice a day during on-peak hours in the morning and evening in the wet season. When water is scarce, energy is generated only during the higher-price evening peak. Hydropower generation is mostly curtailed between 10am and 6pm due to large solar supplies, and increase during morning and evening peaks when solar generation is unavailable. However, by optimizing hydropower scheduling hours, the new energy price pattern can be more profitable. With increased energy price variability and adaptation, overall daily revenue can increase by about 14% in the wet season and 30% in the dry season.Öğe Managing aquifer recharge to overcome overdraft in the lower American river, California, USA(MDPI, 2022) Maskey, Mahesh L.; Doğan, Mustafa S.; Fernandez-Bou, Angel Santiago; Li, Liying; Guzman, Alexander; Arnold, Wyatt; Goharian, Erfan; Lund, Jay R.; Medellin-Azuara, JosueFrequent and prolonged droughts challenge groundwater sustainability in California but managing aquifer recharge can help to partially offset groundwater overdraft. Here, we use managed aquifer recharge (MAR) to examine potential benefits of adding an artificial recharge facility downstream from California’s Lower American River Basin, in part to prepare for drought. We use a statewide hydroeconomic model, CALVIN, which integrates hydrology, the economics of water scarcity cost and operations, environmental flow requirements, and other operational constraints, and allocates water monthly to minimize total scarcity and operating costs. This study considers a recharge facility with unconstrained and constrained flows. The results show that adding a recharge facility increases groundwater storage, reduces groundwater overdraft, and increases hydropower without substantially impacting environmental flows. Further, artificial recharge adds economic benefits by (1) reducing the combined costs of water shortage and surface water storage and (2) by increasing hydropower revenue. This study provides a benchmark tool to evaluate the economic feasibility and water supply reliability impacts of artificial recharge in California.Öğe Representing Hourly Energy Prices in a Large-Scale Monthly Water System Model(Multidisciplinary Digital Publishing Institute (MDPI), 2024) Doğan, Mustafa Şahin; White, Ellie; Yao, Yiqing; Lund, Jay R.Water system management models represent different purposes, such as water supply, flood control, recreation, and hydropower. When building large-scale system models to represent these diverse objectives, their most appropriate time steps for each purpose often do not coincide. A monthly time step is usually sufficient for water supply modeling, but it can be too coarse for flood control, hydropower, and energy operations, where hourly time steps are preferred. Large-scale water management and planning models mostly employ monthly time steps, but using monthly average energy prices underestimates hydropower revenue and overestimates pumping energy cost because these plants tend to operate during times with above- or below-average energy prices within any month. The approach developed here uses hourly varying prices depending on the percent of monthly operating hours. This paper examines an approach that approximately incorporates hourly energy price variations for hydropower and pumping into large-scale monthly time-step water system model operations without affecting water delivery results. Results from including hourly varying energy prices in a large-scale monthly water supply model of California (CALVIN) are presented. CALVIN is a hydroeconomic linear programming optimization model that allocates water to agricultural and urban users with an objective to minimize total scarcity costs, operating costs, and hydropower revenue loss. Thirteen hydropower plants are modeled with hourly varying prices, and their revenue increased by 25 to 58% compared to revenue calculated with monthly average constant energy prices. Hydropower revenue improvements are greater in critically dry years. For pumping plants modeled with hourly varying prices, the energy use cost decreased by 10 to 59%. This study improves system representation and results for large-scale modeling.