Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kaplan, Burak" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    RSESLIBKNN makine öğrenmesi yöntemi kullanılarak parkinson hastalığının tanısı
    (Niğde Ömer Halisdemir Üniversitesi, 2020) Bütüner, İlknur; Kaplan, Burak; Adem, Kemal
    Parkinson hastalığı, insanların yaşam kalitesini etkileyen nörolojik bir hastalıktır. Parkinson hastalığı merkezi sinir sistemini olumsuz etkileyen bir hastalıktır. Hastaların ölümüne yol açabilmektedir. Bu nedenle, Parkinson hastalığının erken tespiti son derece önemlidir. Parkinson hastalığına ait belirtiler, potansiyel olarak gelişmiş makine öğrenme tekniklerine dayanan bilgisayar destekli tanı sistemleri ile tespit edilebilir. Bu çalışmada Parkinson hastalığı tanısı için kNN, RseslibKnn ve A1DE makine öğrenmesi yöntemleri kullanılmıştır. Çalışmanın amacı Parkinson hastalığı veri kümesi üzerinde makine öğrenmesi yöntemlerinin başarı oranlarının karşılaştırılarak en uygun karar destek sisteminin sunulmasıdır. Veri kümesi olarak ‘UC Irvine Machine Learning Repository’ veri tabanından elde edilen, 252 örnekten ve 753 öznitelikten oluşan veri kümesi kullanılmıştır. Literatür üzerinde farklı çalışmalar da incelenip karşılaştırılmıştır. Deneysel çalışmalar farklı çapraz geçerlilikler üzerinden yapılmış olup bunların ortalaması başarı sonucu olarak verilmiştir. Çalışma sonucunda, parkinson hastalığı veri kümesi kNN, RseslibKnn ve A1DE makine öğrenmesi yöntemleri ile sınıflandırılmış ve daha sonra eğitim ve test sonuçları doğruluk, duyarlılık ve özgüllük değerleri temel alınarak değerlendirilmiştir. Farklı çapraz geçerlilik değerleri ile ele alınan tüm yöntemler incelediğinde en yüksek başarı sonucu %97,61 doğruluk oranı ortalaması ile RseslibKnn yöntemi vermiştir. Değerlendirme sonucunda RseslibKnn makine öğrenmesi yönteminin Parkinson hastalığının tespiti ile ilgili karar destek sistemleri üzerine önerilerde bulunulmuştur.

| Aksaray Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Aksaray Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Aksaray, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim