Yazar "Jameel, Samer Kais" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Local information pattern descriptor for corneal diseases diagnosis(Institute of Advanced Engineering and Science, 2021) Jameel, Samer Kais; Aydın, Sezgin; Ghaeb, Nebras H.Light penetrates the human eye through the cornea, which is the outer part of the eye, and then the cornea directs it to the pupil to determine the amount of light that reaches the lens of the eye. Accordingly, the human cornea must not be exposed to any damage or disease that may lead to human vision disturbances. Such damages can be revealed by topographic images used by ophthalmologists. Consequently, an important priority is the early and accurate diagnosis of diseases that may affect corneal integrity through the use of machine learning algorithms, particularly, use of local feature extractions for the image. Accordingly, we suggest a new algorithm called local information pattern (LIP) descriptor to overcome the lack of local binary patterns that loss of information from the image and solve the problem of image rotation. The LIP based on utilizing the sub-image center intensity for estimating neighbors' weights that can use to calculate what so-called contrast based centre (CBC). On the other hand, calculating local pattern (LP) for each block image, to distinguish between two sub-images having the same CBC. LP is the sum of transitions of neighbors' weights, from sub-image center value to one and vice versa. Finally, creating histograms for both CBC and LP, then blending them to represent a robust local feature vector. Which can use for diagnosing, detecting.Öğe Machine learning techniques for corneal diseases diagnosis: A survey(World Scientific, 2021) Jameel, Samer Kais; Aydın, Sezgin; Ghaeb, Nebras H.Machine learning techniques become more related to medical researches by using medical images as a dataset. It is categorized and analyzed for ultimate effectiveness in diagnosis or decision-making for diseases. Machine learning techniques have been exploited in numerous researches related to corneal diseases, contribution to ophthalmologists for diagnosing the diseases and comprehending the way automated learning techniques act. Nevertheless, confusion still exists in the type of data used, whether it is images, data extracted from images or clinical data, the course reliant on the type of device for obtaining them. In this study, the researches that used machine learning were reviewed and classified in terms of the kind of utilized machine for capturing data, along with the latest updates in sophisticated approaches for corneal disease diagnostic techniques.