Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Horasan, Murat" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Characterization of strains induced by in vivo locomotion and axial tibiotarsal loading in a chukar partridge model
    (Elsevier Inc., 2025) Horasan, Murat; Verner, Kari A.; Main, Russell P.; Nauman, Eric A.
    Rodent models have offered valuable insights into the mechanobiological mechanisms that regulate bone adaptation responses to dynamic mechanical stimuli. However, using avian models may provide new insights into the mechanisms of bone adaptation to dynamic loads, as bird bones have distinct features that differ from mammalian bones. This paper illuminates these aspects by evaluating the mechanical environment in a novel avian, chukar partridge tibiotarsus (TBT), during fast locomotion and in cortical and cancellous tissue under in vivo dynamic compressive loading within the TBT. We measured in vivo mechanical strains at the TBT midshaft on the anterior, medial, and posterior surfaces during locomotion at various treadmill speeds. The mean in vivo strains measured on the anterior, medial, and posterior surfaces of the TBT midshaft were 154 με, -397 με, and -438 με, respectively, at a treadmill speed of 2 m/s. The mean experimentally measured strains on the anterior, medial, and posterior surfaces of the TBT were 114.7 με, -952.6 με, and -593.7 με under an in vivo dynamic compressive load of 130 N. The study, which employs a micro-computed tomography (microCT) based finite element model in combination with diaphyseal strain gauge measures, found that cancellous strains were greater than those in the midshaft cortical bone. Sensitivity analyses revealed that the material property of cortical bone was the most significant model parameter. In the midshaft cortical volume of interest (VOI), daily dynamic loading increased the maximum moment of inertia and reduced the bone area in the loaded limb compared to the contralateral control limb after three weeks of loading. Despite the strong correlations between the computationally modeled strains and experimentally measured strains at the medial and posterior gauge sites, no correlations existed between the computationally modeled strains and strain gradients, and histologically measured bone formation thickness at the mid-diaphyseal cross-section of the TBT.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Computationally derived endosteal strain and strain gradients correlate with increased bone formation in an axially loaded murine tibia model
    (Elsevier Ltd, 2024) Horasan, Murat; Verner, Kari A.; Yang, Haisheng; Main, Russell P.; Nauman, Eric A.
    Osteoporosis is a common metabolic bone disorder characterized by low bone mass and microstructural degradation of bone tissue due to a derailed bone remodeling process. A deeper understanding of the mechanobiological phenomena that modulate the bone remodeling response to mechanical loading in a healthy bone is crucial to develop treatments. Rodent models have provided invaluable insight into the mechanobiological mechanisms regulating bone adaptation in response to dynamic mechanic stimuli. This study sheds light on these aspects by means of assessing the mechanical environment of the cortical and cancellous tissue to in vivo dynamic compressive loading within the mouse tibia using microCT-based finite element model in combination with diaphyseal strain gauge measures. Additionally, this work describes the relation between the mid-diaphyseal strains and strain gradients from the finite element analysis and bone formation measures from time-lapse in vivo tibial loading with a fluorochrome-derived histomorphometry analysis. The mouse tibial loading model demonstrated that cancellous strains were lower than those in the midshaft cortical bone. Sensitivity analyses demonstrated that the material property of cortical bone was the most significant model parameter. The computationally-modeled strains and strain gradients correlated significantly to the histologically-measured bone formation thickness at the mid-diaphyseal cross-section of the mouse tibia.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Enhancing the Strength of Polylactic Acid Material by Bonding Glass Fiber-Reinforced Polymer Composite Plates With Various Fabric Weights and Orientations
    (John Wiley and Sons Inc, 2025) Horasan, Murat; Saraç, İsmail; Benli, Semih
    This study investigates the impact of applying bidirectional glass fiber fabric-reinforced polymer (GFRP) composite coatings to the top and bottom surfaces of three-dimensional printed polylactic acid (3D-printed PLA) parts on their mechanical properties. The study uses tensile, three-point bending tests, and finite element method (FEM) analysis to examine how the coatings affect the PLA parts. The objective is to enhance the mechanical properties of PLA parts produced by additive manufacturing (AM) so that they can be used in applications requiring high strength. The study involves bonding bidirectional GFRP composites to the outer surfaces of 3D-printed PLA parts using epoxy adhesive to create sandwich-structured composite materials. Two different types of bidirectional glass fiber fabric (GFF) with low weight (25 g/m2) and high weight (100 g/m2) are used as reinforcement materials, while epoxy serves as the matrix material in the composite coatings. The production process involves creating bidirectional-GFF reinforcement materials in two layers, cut at 0° and 45° orientation angles, and bonding them to PLA specimens with epoxy adhesive. Mechanical tests demonstrate increased tensile and flexural strength of PLA parts coated with bidirectional GFRP composite compared to uncoated PLA material. The finite element analyses that simulated tensile and flexural tests showed consistent computational results with experimental findings.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Strengthening of polylactic acid parts with carbon fiber reinforced polymer composite plates featuring single and double fabric layers in various orientations
    (John Wiley and Sons Inc, 2025) Saraç, İsmail; Horasan, Murat; Benli, Semih
    This study investigated how coating the surfaces of three-dimensional printed polylactic acid (PLA) parts with carbon fiber fabric-reinforced polymer (CFRP) plates affects their mechanical behavior. The assessment was performed through tensile tests, three-point bending tests, and finite element method analysis. The goal of this study was to enhance the mechanical properties of PLA parts produced through fused deposition modeling (FDM) to expand their applicability in structures. CFRP composites were bonded to the 3D-printed PLA parts using epoxy to create sandwich-structured composite samples. The impact of composite coatings on the mechanical properties of 3D-printed PLA parts was examined in relation to fiber orientation angles and the number of coating layers. Mechanical tests indicated that the tensile and flexural strength of PLA parts coated with CFRP composite was higher than that of uncoated PLA material. In tensile tests, the maximum failure load of uncoated PLA specimens was 861.1 N, whereas the maximum failure load of a composite hybrid structural specimen—fabricated by bonding the PLA with a CFRP composite plate at a 0° orientation angle and employing a double layer of carbon fiber fabric—was 4265 N. Consequently, the increase in failure load was 395%. Finite element analyses simulating the tensile and flexural tests produced results that aligned with the experimental findings. Highlights: CFRP composite plates were fabricated with different ply numbers and fiber orientations. The hybrid structures were produced by bonding CFRP plates with 3D-printed PLA parts. Tensile and flexure tests were performed on hybrid composite structures. Reinforcing 3D-printed PLA with CFRP plates improves mechanical properties.
  • Yükleniyor...
    Küçük Resim
    Öğe
    The fatigue responses of 3D-printed polylactic acid (PLA) parts with varying raster angles and printing speeds
    (John Wiley and Sons Inc, 2024) Horasan, Murat; Saraç, İsmail
    In this study, the fatigue behavior of FDM-3D printed polylactic acid (PLA) materials was investigated by rotary bending fatigue tests and finite element studies with varying printing speed and raster angle parameters. Fatigue test specimens were manufactured at five different raster angles (0°, 30°, 45°, 60°, and 90°) and two different printing speeds (20 and 80 mm/s). The effect of printing speed was evaluated at high print speed variation range (20 and 80 mm/s print speeds). It was noticed that the change in raster angle affects the fatigue life very significantly. The highest fatigue life was obtained at 30° raster angle, while the lowest fatigue life was found at 90° raster angle. Increasing the printing speed from 20 to 80 mm/s decreased the fatigue life of all specimens. The derived results from the finite element analyses were consistent with the experimental results.
  • Yükleniyor...
    Küçük Resim
    Öğe
    The torsional characterization of 3D-Printed polylactic acid parts with alternating additive manufacturing parameters
    (John Wiley and Sons Ltd, 2024) Saraç, İsmail; Horasan, Murat
    Three-dimensional (3D) printed polymer parts can be subjected to torsional loads in accordance with the conditions of use. Understanding the torsional properties of 3D printed polymers depending on the printing parameters is a significant research topic in fused deposition modeling (FDM) additive manufacturing processes to be used as machine parts operating under torsional load, such as polymer parts manufactured by extrusion method. Some studies have shown that raster angle and printing speed affect the mechanical properties of 3D-printed polymers. However, tensile tests were used in most of those studies. In this study, the torsional behavior of 3D printed Polylactic acid (PLA) materials was investigated by static torsion tests, finite element analyses, and theoretical and failure analyses with respect to the printing speed and raster angle parameters. Torsion test specimens were manufactured at five different raster angles (0°, 30°, 45°, 60°, and 90°) and two different printing speeds (20 and 80 mm/s) from PLA material using the FDM additive manufacturing method. The results showed that raster angle and printing speed parameters affected the torsional load-carrying capacity of FDM-3D printed PLA parts. The best load-carrying capacity was achieved at 30° and 60° raster angles, while the lowest was measured at 0° raster angle. The torsional load-carrying capacity was significantly enhanced by 85% for specimens manufactured at the printing speed of 80 mm/s.

| Aksaray Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Aksaray Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Aksaray, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim