Yazar "Hashim, Abdulghafor Mohammed" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Enhanced Total Harmonic Distortion Optimization in Cascaded H-Bridge Multilevel Inverters Using the Dwarf Mongoose Optimization Algorithm(Department of Agribusiness, Universitas Muhammadiyah Yogyakarta, 2024) Salih, Sinan Q.; Mejbel, Basim Ghalib; Ahmad, B.A.; Taha, Taha A.; Bektaş, Yasin; Aldabbagh, Mohammed M.; Hussain, Abadal-Salam T.; Hashim, Abdulghafor Mohammed; Veena, B.S.Total harmonic distortion (THD) is one of the most essential parameters that define the operational efficiency and power quality in electrical systems applied to solutions like cascaded H-bridge multilevel inverters (CHB-MLI). The reduction of THD is crucial due to the fact that improving the system’s power quality and minimizing the losses are key for performance improvement. The purpose of this work is to introduce a new DMO-based approach to optimize the THD of the output voltage in a three-phase nine-level CHB-MLI. The proposed DMO algorithm was also subjected to intense comparison with two benchmark optimization techniques, namely Genetic Algorithm and Particle Swarm Optimization with regards to three parameters, namely convergence rate, stability, and optimization accuracy. A series of MATLAB simulations were run to afford the evaluation of each algorithm under a modulation index of between 0.1 and 1.0. The outcome of the experiment amply proves that in comparison with THD minimization for the given OP, the DMO algorithm was significantly superior to both RSA-based GA and PSO algorithms in their ability to yield higher accuracy while requiring lesser computational time. Consequently, this work could expand the application of the DMO algorithm as a reliable and effective means of enhancing THD in CHB-MLIs as well as advancing the overall quality of power systems in different electrical power networks.Öğe Enhancing Multilevel Inverter Performance: A Novel Dung Beetle Optimizer-based Selective Harmonic Elimination Approach(Department of Agribusiness, Universitas Muhammadiyah Yogyakarta, 2024) Taha, Taha A.; Neamah, Muthanna İbrahim; Ahmed, Saadaldeen Rashid; Taha, Faris Hassan; Bektaş, Yasin; Desa, Hazry; Yassin, Khalil Farhan; İbrahim, Marwa; Hashim, Abdulghafor MohammedThis paper introduces a novel approach for enhancing the performance of multilevel inverters by applying a dung beetle optimizer (DBO)-based Selective Harmonic Elimination (SHE) technique. Focusing on a 3-phase multilevel inverter (MLI) with a non-H-bridge structure, the proposed method offers advantages such as cost-effective hardware implementation and eliminating the traditional H-bridge inverter requirement. To assess its efficacy, we compare the presented DBO-based SHE technique (DBOSHE) with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), evaluating their ability to determine optimal switching angles for achieving low-distorted load voltage. Unlike methods reliant on time-consuming calculations or fixed solutions, DBO provides a flexible approach, considering multiple possibilities to yield accurate switching angles. Using Simulink, harmonic component values and Total Harmonic Distortion (THD) are obtained for each optimization technique, specifically emphasizing on 9-level and 11-level MLI topologies. Our study aims to identify the most effective optimization technique for achieving lower THD and THDe values while eliminating odd-order harmonics from the 3-phase load voltage. Finally, we demonstrate the effectiveness of employing DBO for THD and THDe optimization within the SHE technique.