Yazar "Engin, Sevda" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Determination of microstructure and mechanical and thermophysical properties of Al-Si-Mg-XCr alloy(Elsevier, 2024) Kaygısız, Yusuf; Palta, Çetin; Engin, SevdaThe study added different proportions of Cr to the Al-Si-Mg eutectic alloy and applied heat treatment to the quaternary alloy. So, the Al-Si-Mg eutectic alloy's microstructure and morphology were looked at after Cr was added and it was heated. In addition, the hardness, tensile strength, fracture surface analysis, and thermoelectric properties of newly produced Al-12.95 % Si-4.96 % Mg-X%Cr alloys were also determined. In the newly formed alloy, along with the expected Si and Mg2Si phases in the Al matrix phase, a randomly distributed CrSi2 binary intermetallic phase in a white hexagonal structure was observed with the effect of Cr addition. Additionally, a magnesium-rich Al9FeMg3Si5 intermetallic phase was observed, which we think was formed by the effect of Fe impurity atoms. Hardness and tensile strength values, which are the mechanical properties of the alloy, increased significantly after heat treatment. The hardness value of the 0.5 % Cr-added sample increased by approximately 77 % and reached 107.95 +/- 6.0 kg/mm2. At the same time, the hardness value of the intermetallic CrSi2 phase in the quaternary Al-12.95 wt%Si-4.96 wt%Mg-1.0%Cr alloy was found to be 794.3 +/- 30 kg/mm2. Similarly, the maximum tensile strength value of the 0.5 % Cr-added sample after heat treatment increased by approximately 105 % and reached 160.53 MPa. Melting temperatures (Tm) (K), fusion enthalpy (Delta H) (J/g), and specific heat Cpl (J/gK) were determined for non-heat-treated materials. The 0.5, 1.0, and 1.5 Cr-added samples had Tm of 563.38 degrees C, 558.44 degrees C and 572.61 degrees C, respectively. The Delta H value of samples with 0.5 %, 1.0 % and 1.5 % Cr addition is 605.70 (J/g), 579.92 (J/g) and 552.24 (J/g), respectively. Cpl was 0.724 J/g.K, 0.698 J/g.K and 0.653 J/g.K for 0.5 %, 1.0 %, and 1.5 % Cr-added samples. In both heat-treated and non-heat-treated samples, Cr enhanced electrical resistance.Öğe The Effect of Mn Addition and Heat Treatment on the Microstructure, Mechanical, and Thermophysical Properties of Al-Si-Mg Eutectic Alloy(Springer Science and Business Media Deutschland GmbH, 2024) Kaygısız, Yusuf; Palta, Çetin; Kaymaz, Tuba Çifçi; Engin, SevdaThe study added Mn at different rates to the Al–Si–Mg eutectic alloy and heat-treated the quaternary alloy. Therefore, the microstructure morphology of the Al–Si–Mg eutectic alloy was examined after Mn addition and heat treatment. Also determined were the hardness, tensile strength, fracture surface analysis, and thermoelectric characteristics of the newly produced Al–12.95%Si–4.96%Mg–X%Mn [X=0.5, 1.0, and 1.5 (wt.)] alloys. Along with the predicted Si and Mg2Si phases in the Al matrix phase, this investigation found a randomly distributed Mn-rich Al15Mn3Si2 intermetallic phase and a Mg-rich Al5Si3Mg2 phase. Mn-doped samples without heat treatment were somewhat softer than the parent alloy. After heat treatment, the hardness more than doubled for the Al–Si–Mg eutectic system and Mn-doped samples. After heat treatment, the alloy with 1.5% Mn added had the maximum hardness value of 94.3±5.0 HV. Heat treatment improved tensile strength by up to 80%, and the alloy with 0.5% Mn had 144.7 MPa. Melting temperatures (Tm) (K), fusion enthalpy (?H) (J/g), and specific heat Cpl (J/gK) were determined for non-heat-treated materials. The 0.5, 1.0, and 1.5 Mn-added samples had Tm of 566.30, 568.96, and 566.40 °C, respectively. The ?H value of samples with 0.5%, 1.0% and 1.5% Mn addition is 662.29, 657.93 and 639.11, respectively. Cpl was 0.788, 0.781, and 0.761 J/g.K. for 0.5%, 1.0%, and 1.5% Mn-added samples. In both heat-treated and non-heat-treated samples, Mn enhanced electrical resistance.