Yazar "Bilican, Ismail" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An inclusive physico-chemical perspective on food waste: Textural and morphological structure(Elsevier Ltd, 2023) Çelebi, Hakan; Bahadır, Tolga; Bilican, IsmailIn recent years, thanks to their advantages such as low cost, easy availability, reusability as adsorbent materials, and high metal ion removal capacities in aqueous solutions, food waste attract the attention of researchers. In this study, almond shell (AS), peanut shell (PS), walnut shell (WS), and pumpkin seed hull (PSH) were characterized using analytical methods such as Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscope (SEM)/Energy dispersed X-ray (EDX), and Brunauer–Emmett–Teller (BET). The surface morphologies, functional groups, surface area, and pore size of AS, PS, WS, and PSH were evaluated together, and their specific properties were revealed. According to EDX analysis, %C and %O content is high for all biosorbents. Using FTIR analysis, carboxylic (–COOH), amines (N–H) and hydroxyl groups (–OH) in the structure of AS, WS, PS, and PSH were determined. Pore morphologies were determined as mesopore (250 nm) for AS, PS, WS, and PSH. Surface areas for AS, PS, WS and PSH were determined as 6.20, 4.12, 3.98 and 2.74 m2/g, respectively. In addition, using the Principal Component Analysis (PCA) model, the effect levels of AS, PS, WS, and PSH on the adsorption process were determined by FTIR and EDX data sets. With the increasing interest in environmental preservation, it is anticipated that low-cost food waste-based biosorbents will be utilized in various applications in the future.Öğe Anti-cancer effect of Thymus vulgaris based synthesized gold nanoparticles in giant macroporous silica: impact on MCF-7 breast cancer cells(Springer, 2025) Koç Bilican, Behlül; Benarous, Samiha; Koca, Fatih Dogan; Cansaran-Duman, Demet; Sørensen, Martin Vinther; Bilican, Ismail; Kaya, MuratConventional cancer therapies, while effective, are frequently associated with significant adverse effects owing to their lack of selectivity, impacting both malignant and healthy cells. To address these challenges, gold nanoparticles (AuNPs) have emerged as a promising platform for targeted drug delivery. Giant macroporous silica (GMS) is a recently developed material, with its drug delivery potential explored in only a single study to date. In this study, gold nanoparticles (AuNPs) synthesized using Thymus vulgaris (garden thyme) extract were incorporated into GMS, forming GMS-AuNPs. Additionally, AuNPs coated with chitosan (AuNPs@CS) were similarly loaded into GMS, resulting in GMS-AuNPs@CS composites. The synthesized materials were characterized through light microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The anti-cancer effects of GMS-AuNPs and GMS-AuNPs@CS were assessed against breast cancer cells using real-time cell analysis. Notably, no cytotoxic effects were observed on MCF-12 A normal breast epithelial cells at any of the tested concentrations. GMS-AuNPs demonstrated a dose- and time-dependent cytotoxic effect on breast cancer cells. These findings suggest that GMS-AuNPs hold promise as a potential therapeutic strategy for breast cancer treatment.