Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Baran, Tesnim Meryem" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Local T3 constant filter convergence spaces
    (Gazi University, 2020) Baran, Tesnim Meryem; Erciyes, Ayhan
    In this paper, we characterize each of local T3(resp. T3?, ST?3, ST3?) constant filter convergence spaces and investigate the relationships among these various forms. We show that the full subcategories T?3ConFCO and ST?3ConFCO (resp. T3?ConFCO and ST3?ConFCO) of ConFCO are isomorphic categories. Moreover, we show that if a constant filter convergence space (B,K) is T?3 (resp. T3?, ST?3 or ST3?) at p and M?B with p?M, then M is T?3 (resp. T3? ) at p.
  • Yükleniyor...
    Küçük Resim
    Öğe
    T4 , Urysohn’s lemma, and Tietze extension theorem for constant filter convergence spaces
    (TÜBİTAK, 2021) Baran, Tesnim Meryem; Erciyes, Ayhan
    In 1978, Schwarz [14] introduced the category ConF CO whose objects are constant filter convergence spaces and morphisms are continuous maps, and he showed that ConF CO is isomorphic to the category FILTER whose objects are filter spaces and morphisms are continuous maps. He also showed that it is a bireflective subcategory of F CO whose objects are filter convergence spaces and morphisms are continuous maps. Hence, Schwarz proved that ConF CO is the natural link between FILTER and the category F CO. In 1991, Baran [3] introduced the local T1 separation property that is used to define the notion of strongly closed subobject of an object of a topological category, which are used in the notions of compactness [8], connectedness [10], and normal objects [3]. In general topology, one of the most important uses of separation properties is theorems such as the Urysohn?s lemma and the Tietze extension theorem. In this regard, it is useful to be able to extend these In this paper, we characterize various local forms of T4 constant filter convergence spaces and investigate the relationships among them as well as showing that the full subcategories of the category of constant filter convergence spaces consisting of local T4 constant filter convergence spaces that are hereditary. Furthermore, we examine the relationship between local T4 and general T4 constant filter convergence spaces. Finally, we present Urysohn?s lemma and Tietze extension theorem for constant filter convergence spaces.

| Aksaray Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Aksaray Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Aksaray, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim