Yazar "Ayasun, Saffet" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Computation of stability regions for time-delayed two-area load frequency control system including dynamic demand response(Gazi Üniversitesi, 2024) Katipoğlu, Deniz; Sönmez, Şahin; Ayasun, SaffetThis study focuses on the computation of stability regions of the time-delayed two-area load frequency control including dynamic demand response (LFC-DDR) using stability boundary locus method. With the participation of controllable responsive loads into the frequency regulation service, dynamic demand response (DDR) has become an important solution for proper balancing between generation and peak load and to overcome the intermittent nature of renewable power generations. Although the utilization of DDR control technique increases the reliability and security of the load frequency control (LFC) systems, communication time delays because of the communication networks adversely affect the controller performance and LFC system stability. Therefore, this study obtains the all stabilizing proportional-integral (PI) controller gains that guarantee the stability of the LFC-DDR system. For that purpose, stability boundary locus method is used to obtain stability regions in the controller parameters space that constitute of complex root boundary (CRB) and real root boundary (RRB) loci of the time-delayed LFC-DDR systems. The accuracy of theoretical results is verfied by an independent algoirithm, quasi-polynomial mapping root (QPmR) finder algorithm, and time-domain simulations. Results indicate that the participation of DDR control loop increases the stability regions and stability margin of the LFC system even in the presence of communication time delays.Öğe Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması(Gazi Üniversitesi, 2024) Katipoğlu, Deniz; Sönmez, Şahin; Ayasun, SaffetBu çalışmada, dinamik talep cevabı (DTC) ve haberleşme zaman gecikmesi içeren iki bölgeli yük frekans kontrol (YFK-DTC) sisteminin kararlılık sınır eğrisi yöntemi kullanılarak denetleyici parametre düzleminde kararlılık bölgeleri hesaplanmıştır. DTC kontrol, kontrol edilebilir yük gruplarını frekans kontrol servisine dahil ederek, üretim ve puant yük talebi arasında dengenin daha kısa sürede sağlanması ve yenilenebilir enerji kaynaklarında güç dengesizlikleri problemlerine karşı önemli bir çözüm sunmaktadır. DTC kontrol mekanizmasının yük frekans kontrol sistemlerinde kullanımı, sistemin güvenliği ve güvenilirliğini sağlamasına rağmen, haberleşme ağlarından kaynaklanan zaman gecikmeleri, denetleyici performansını ve sistemin kararlılığını olumsuz etkileyebilmektedir. Dolayısıyla, bu çalışma zaman gecikmesi içeren iki bölgeli YFK-DTC sisteminin kararlılığını garanti edecek tüm oransal-integral (PI) denetleyici kazanç değerlerini elde etmektedir. Bu amaçla, zaman gecikmeli YFK-DTC sisteminin denetleyici parametre düzleminde kararlılık bölgelerini oluşturan kompleks kök sınır (Complex Root Boundary, CRB) eğrisini ve reel kök sınır (Real Root Boundary, RRB) eğrisini bulmak için kararlılık sınır eğrsi yöntemi kullanılmıştır. Elde edilen teorik sonuçların doğruluğu, quasi-polynomial mapping root (QPmR) algoritması ve zaman düzleminde yapılan benzetim çalışmaları ile gösterilmiştir. Sonuçlar, DTC kontrol çevriminin katkısı ile zaman gecikmeli YFK sisteminin kararlılık bölgelerinin ve kararlılık payının arttığını göstermektedir.Öğe Impact of participation ratios on the stability delay margins computed by direct method for multiple-area load frequency control systems with demand response(Taylor and Francis Ltd., 2022) Katipoğlu, Deniz; Sönmez, Şahin; Ayasun, Saffet; Naveed, AusnainThis article studies the effect of dynamic demand response (DR) control on stability delay margins of load frequency control (LFC) systems including communication time delays. DR control is a significant tool to control the responsive loads and increase the reliability of LFC system. The DR control effort on the frequency regulation is provided to each control area of LFC system, called as LFC-DR system. Although the DR control provides some benefits to power grid, communication networks equipped in LFC systems cause communication time delays that degrade dynamic stability of the LFC systems resulting in exponential terms in the characteristic equation of LFC-DR system. This study utilizes an exact method to eliminate the exponential terms without any approximation and transform it into a regular polynomial. The method is utilized to identify stability delay margins for various proportional–integral gains and participation ratios of the secondary and DR control loops for the LFC-DR system. The delay margin values obtained are confirmed by time-domain simulations and a root finder algorithm based on quasi-polynomial mapping. Results indicate that the DR control significantly increases stability delay margins and improves the frequency response of the system as compared with conventional frequency regulation methods.Öğe The effect of demand response control on stabIlIty delay margIns of load frequency control systems with communIcatIon tIme-delays(Türkiye Klinikleri, 2021) Katipoğlu, Deniz; Sönmez, Şahin; Ayasun, Saffet; Naveed, AusnainThIs paper studIes the effect of dynamIc demand response (DR) control on stabIlIty delay margIns of load frequency control (LFC) systems IncludIng communIcatIon tIme-delays. A DR control loop Is Included In each control area, called as LFC-DR system and RekasIus substItutIon Is utIlIzed to IdentIfy stabIlIty margIns for varIous proportIonalIntegral (PI) gaIns and partIcIpatIon ratIos of the secondary and DR control loops. The purpose of RekasIus substItutIon technIque Is to obtaIn purely complex roots on the ImagInary axIs of the tIme-delayed LFC-DR system. ThIs substItutIon fIrst converts the characterIstIc equatIon of the LFC-DR system IncludIng delay-dependent exponentIal terms Into an ordInary polynomIal. Then the well-known Routh-HurwItz stabIlIty method Is applIed to fInd those ImagInary roots and the correspondIng stabIlIty delay margIn known as maxImal tIme-delay. Delay margIn results IndIcate that the InclusIon of DR control loop sIgnIfIcantly Increases stabIlIty delay margIn and Improves the frequency dynamIc behavIor of the LFC system IncludIng tIme-delays. TheoretIcal stabIlIty margIns are confIrmed by a proven algorIthm, quasI-polynomIal mappIng-based root fInder (QPmR) algorIthm and tIme-domaIn sImulatIons.