Novel chitosan based smart cathode electrocatalysts for high power generation in plant based-sediment microbial fuel cells
Abstract
Smart electrocatalysts are synthesized from chitosan polymer and magnetic particles to enhance power by plant based sediment microbial fuel cell (P-SMFC). Cross-linked procedure is performed gelatinous microspheres as supporting metals (Cu, Pd, Mn, Pt, and Ni) and magnetic particles which create a porous structure on smart catalysts for increase ORR activity. A high and quick OCV rising is achieved with addition of Mag-Pd-Ch in reactor, and OCV value immediately increase from 0.408 V to 0.819 V within 10 minutes. The highest power density is also obtained as 1298 mW m-2 for reactor with Mag-Pd-Ch, which was 15 times higher than control. Significant metal leaching is observed using plant growth for smart catalyst containing Cu. Consequently, high power production, good stabilization, easy separation from water environment due to magnetic property, and relatively low cost make use of Mag-Pd-Ch both economic and environment friendly tools to enhance power generation in P-SMFC