Bahşi, Mustafa2021-07-012021-07-012020https://hdl.handle.net/20.500.12451/8237In this study, we compute the unitarily invariant norms of the matrices A(z) = (z(i)z(j))(i,j=1)(n), B-z = (z(i) - z(j))(i,j=1)(n) and C-z = (z(i)/z(j))(i,j=1)(n), where z(i)s are ith components of any complex sequence (z(n)). Moreover, we give some corollaries and numerical examples related to norms of these matrices.eninfo:eu-repo/semantics/closedAccessUnitarily Invariant NormsSingular ValuesComplex SequenceOn the unitarily invariant norms of the matrices connected to complex number sequencesArticle2-305312N/A